A wavelet multilevel solution of the stationary geoelectrical field in the non-homogeneous environment
Matematičeskoe modelirovanie, Tome 14 (2002) no. 5, pp. 98-108.

Voir la notice de l'article provenant de la source Math-Net.Ru

The contribution deals with a solution of the direct geophysical problem for the stationary electrical field in the non-homogeneous environment. The environment is represented by a planar domain composed from the several subdomains, i.e. homogeneous environments with different resistivity. The solution is based on a wavelet-Galerkin discretization of the problem via a fictitious domain formulation. Therefore two kinds of the Lagrange multipliers are considered: the first one enforces the boundary condition on the real domain while the second one is located on interfaces of the homogeneous environments and ensures the continuity of the potential of the electrical field. Multilevel structure of the wavelet spaces enables to solve efficiently the linear systems arising from the discretization. The presented solver uses the wavelet-based multigrid technique. The numerical experiments described in the paper confirm the efficiency of the method as well as the agreement with the physical reality.
@article{MM_2002_14_5_a9,
     author = {N. Castova and E. Drstakova and R. Kucera},
     title = {A wavelet multilevel solution of the stationary geoelectrical field in the non-homogeneous environment},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {98--108},
     publisher = {mathdoc},
     volume = {14},
     number = {5},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MM_2002_14_5_a9/}
}
TY  - JOUR
AU  - N. Castova
AU  - E. Drstakova
AU  - R. Kucera
TI  - A wavelet multilevel solution of the stationary geoelectrical field in the non-homogeneous environment
JO  - Matematičeskoe modelirovanie
PY  - 2002
SP  - 98
EP  - 108
VL  - 14
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2002_14_5_a9/
LA  - en
ID  - MM_2002_14_5_a9
ER  - 
%0 Journal Article
%A N. Castova
%A E. Drstakova
%A R. Kucera
%T A wavelet multilevel solution of the stationary geoelectrical field in the non-homogeneous environment
%J Matematičeskoe modelirovanie
%D 2002
%P 98-108
%V 14
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2002_14_5_a9/
%G en
%F MM_2002_14_5_a9
N. Castova; E. Drstakova; R. Kucera. A wavelet multilevel solution of the stationary geoelectrical field in the non-homogeneous environment. Matematičeskoe modelirovanie, Tome 14 (2002) no. 5, pp. 98-108. http://geodesic.mathdoc.fr/item/MM_2002_14_5_a9/

[1] N. Castová, E. Drstáková, “Analysis of stationary geoelectrical field on non-homogeneous environment”, Proc. Latest mathematical methods in engineering, VŠB-TU, Ostrava, 2000, 26–32

[2] I. Daubechies, “Orthonormal bases of compactly supported wavelets”, Comm. Pure. Appl. Math., 41 (1988), 909–996 | DOI | MR | Zbl

[3] I. Daubechies, Ten lectures on wavelets, SIAM, Philadelphia, 1992 | MR

[4] E. Drstáková, Analysis of the model problem of the stationary electrical field on nonhomogeneous environment, Diploma thesis, VŠB-TU Ostrava, 2000 | Zbl

[5] T. Eriola, “Sobolev characterization of solution of dilation equations”, SIAM J. Math. Anal., 23 (1992), 1015–1030 | DOI | MR

[6] R. Glowinski, T. Pan, R. O. Wells, X. Zhou, A wavelet multigrid preconditioner for Dirichlet boundary value problems in general domains, Technical report, 1994

[7] R. Glowinski, T. Pan, R. O. Wells, X. Zhou, A preconditioned $\mathrm{CG}$-method for wavelet-Galerkin discretizations of elliptic problems, Technical report, 1994

[8] R. Kučera, “Wavelet solution of elliptic PDE”, Proc. Matematyka v naukach technicznych i przyrodniczych, Krakow, 2000, 55–62

[9] R. Kučera, E. Drstáková, Wavelet solution of the stationary geoelectrical fields in the non-homogeneous environment, Technical report of VŠB-TU Ostrava, 2001

[10] R.Kučera, J. Vlček, “Galerkin method with wavelet bases”, SANM 99', Nectiny, 1999, 191–208

[11] M. Karous, Geoelectrical methods of explorations, SNTL, Prague, 1989

[12] A. K. Louis, P. Maass, A. Rieder, Wavelets. Theory and applications, J. Wiley Sons, 1997 | MR

[13] R. O. Wells, X. Zhou, Wavelet interpolation and approximate solution of elliptic partial differential equations, Technical report, 1993