Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2002_14_5_a9, author = {N. Castova and E. Drstakova and R. Kucera}, title = {A wavelet multilevel solution of the stationary geoelectrical field in the non-homogeneous environment}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {98--108}, publisher = {mathdoc}, volume = {14}, number = {5}, year = {2002}, language = {en}, url = {http://geodesic.mathdoc.fr/item/MM_2002_14_5_a9/} }
TY - JOUR AU - N. Castova AU - E. Drstakova AU - R. Kucera TI - A wavelet multilevel solution of the stationary geoelectrical field in the non-homogeneous environment JO - Matematičeskoe modelirovanie PY - 2002 SP - 98 EP - 108 VL - 14 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2002_14_5_a9/ LA - en ID - MM_2002_14_5_a9 ER -
%0 Journal Article %A N. Castova %A E. Drstakova %A R. Kucera %T A wavelet multilevel solution of the stationary geoelectrical field in the non-homogeneous environment %J Matematičeskoe modelirovanie %D 2002 %P 98-108 %V 14 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2002_14_5_a9/ %G en %F MM_2002_14_5_a9
N. Castova; E. Drstakova; R. Kucera. A wavelet multilevel solution of the stationary geoelectrical field in the non-homogeneous environment. Matematičeskoe modelirovanie, Tome 14 (2002) no. 5, pp. 98-108. http://geodesic.mathdoc.fr/item/MM_2002_14_5_a9/
[1] N. Castová, E. Drstáková, “Analysis of stationary geoelectrical field on non-homogeneous environment”, Proc. Latest mathematical methods in engineering, VŠB-TU, Ostrava, 2000, 26–32
[2] I. Daubechies, “Orthonormal bases of compactly supported wavelets”, Comm. Pure. Appl. Math., 41 (1988), 909–996 | DOI | MR | Zbl
[3] I. Daubechies, Ten lectures on wavelets, SIAM, Philadelphia, 1992 | MR
[4] E. Drstáková, Analysis of the model problem of the stationary electrical field on nonhomogeneous environment, Diploma thesis, VŠB-TU Ostrava, 2000 | Zbl
[5] T. Eriola, “Sobolev characterization of solution of dilation equations”, SIAM J. Math. Anal., 23 (1992), 1015–1030 | DOI | MR
[6] R. Glowinski, T. Pan, R. O. Wells, X. Zhou, A wavelet multigrid preconditioner for Dirichlet boundary value problems in general domains, Technical report, 1994
[7] R. Glowinski, T. Pan, R. O. Wells, X. Zhou, A preconditioned $\mathrm{CG}$-method for wavelet-Galerkin discretizations of elliptic problems, Technical report, 1994
[8] R. Kučera, “Wavelet solution of elliptic PDE”, Proc. Matematyka v naukach technicznych i przyrodniczych, Krakow, 2000, 55–62
[9] R. Kučera, E. Drstáková, Wavelet solution of the stationary geoelectrical fields in the non-homogeneous environment, Technical report of VŠB-TU Ostrava, 2001
[10] R.Kučera, J. Vlček, “Galerkin method with wavelet bases”, SANM 99', Nectiny, 1999, 191–208
[11] M. Karous, Geoelectrical methods of explorations, SNTL, Prague, 1989
[12] A. K. Louis, P. Maass, A. Rieder, Wavelets. Theory and applications, J. Wiley Sons, 1997 | MR
[13] R. O. Wells, X. Zhou, Wavelet interpolation and approximate solution of elliptic partial differential equations, Technical report, 1993