Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2002_14_5_a8, author = {A. A. Hemmat and M. Radjabalipour}, title = {Discretization associated to generalized frames}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {91--97}, publisher = {mathdoc}, volume = {14}, number = {5}, year = {2002}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2002_14_5_a8/} }
A. A. Hemmat; M. Radjabalipour. Discretization associated to generalized frames. Matematičeskoe modelirovanie, Tome 14 (2002) no. 5, pp. 91-97. http://geodesic.mathdoc.fr/item/MM_2002_14_5_a8/
[1] A. Askari-Hemmat, M. A. Dehghan, M. Radjabalipour, “Generalized Frames and Their Redundancy”, Proc. Amer. Math. Soc., 129 (2001), 1143–1147 | DOI | MR | Zbl
[2] A. Askari-Hemmat, M. A. Dehghan, M. Radjabalipour, “Frame Preserving Mappings”, Proc. of 30th Iranian Mathematical Conf. (March 28–31, 1999), Univ. Mohaghegh Ardabili, Ardebil, Iran
[3] G. Kaiser, A Friendly Guide to Wavelets, Birkhauser, 1995 | MR
[4] G. Kaiser, Generalized Wavelet Transform, Part I: The Window $X$-ray Transforms, Technical Reports Series No 18, Mathematics Department, University of Lowell
[5] A. Ron, Z. Shen, “Weyl-Heisenberg frames and Riesz basis in $L^2(\mathbb R^d)$”, Duke Math. J., 89 (1997), 237–282 | DOI | MR | Zbl
[6] P. Wojtaszczyk, A Mathematical Introduction to Waveltes, Cambridge University Press, 1997 | MR | Zbl