Discretization associated to generalized frames
Matematičeskoe modelirovanie, Tome 14 (2002) no. 5, pp. 91-97.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we will construct discrete frames (wavelets) associated to generalized frames (wavelets) with an emphasis on those associated to windowed Fourier transforms.
@article{MM_2002_14_5_a8,
     author = {A. A. Hemmat and M. Radjabalipour},
     title = {Discretization associated to generalized frames},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {91--97},
     publisher = {mathdoc},
     volume = {14},
     number = {5},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2002_14_5_a8/}
}
TY  - JOUR
AU  - A. A. Hemmat
AU  - M. Radjabalipour
TI  - Discretization associated to generalized frames
JO  - Matematičeskoe modelirovanie
PY  - 2002
SP  - 91
EP  - 97
VL  - 14
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2002_14_5_a8/
LA  - ru
ID  - MM_2002_14_5_a8
ER  - 
%0 Journal Article
%A A. A. Hemmat
%A M. Radjabalipour
%T Discretization associated to generalized frames
%J Matematičeskoe modelirovanie
%D 2002
%P 91-97
%V 14
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2002_14_5_a8/
%G ru
%F MM_2002_14_5_a8
A. A. Hemmat; M. Radjabalipour. Discretization associated to generalized frames. Matematičeskoe modelirovanie, Tome 14 (2002) no. 5, pp. 91-97. http://geodesic.mathdoc.fr/item/MM_2002_14_5_a8/

[1] A. Askari-Hemmat, M. A. Dehghan, M. Radjabalipour, “Generalized Frames and Their Redundancy”, Proc. Amer. Math. Soc., 129 (2001), 1143–1147 | DOI | MR | Zbl

[2] A. Askari-Hemmat, M. A. Dehghan, M. Radjabalipour, “Frame Preserving Mappings”, Proc. of 30th Iranian Mathematical Conf. (March 28–31, 1999), Univ. Mohaghegh Ardabili, Ardebil, Iran

[3] G. Kaiser, A Friendly Guide to Wavelets, Birkhauser, 1995 | MR

[4] G. Kaiser, Generalized Wavelet Transform, Part I: The Window $X$-ray Transforms, Technical Reports Series No 18, Mathematics Department, University of Lowell

[5] A. Ron, Z. Shen, “Weyl-Heisenberg frames and Riesz basis in $L^2(\mathbb R^d)$”, Duke Math. J., 89 (1997), 237–282 | DOI | MR | Zbl

[6] P. Wojtaszczyk, A Mathematical Introduction to Waveltes, Cambridge University Press, 1997 | MR | Zbl