Global analysis of wavelet methods for Euler's equation
Matematičeskoe modelirovanie, Tome 14 (2002) no. 5, pp. 75-88

Voir la notice de l'article provenant de la source Math-Net.Ru

Euler's equation for the velocity и of an inviscid incompressible flow on Euclidean space admits the weak formulation $(\dot u,v)=([u,v],w)$, for all divergence free vector fields $v$. Here $(\,\cdot\,,\,\cdot\,)$ denotes the scalar product that represents kinetic energy and $[\,\cdot\,,\,\cdot\,]$ denotes the Poisson bracket. We employ global analysis methods based on this formulation to discuss Faedo–Galerkin approximation using divergence free wavelets.
@article{MM_2002_14_5_a6,
     author = {W. Lawton},
     title = {Global analysis of wavelet methods for {Euler's} equation},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {75--88},
     publisher = {mathdoc},
     volume = {14},
     number = {5},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MM_2002_14_5_a6/}
}
TY  - JOUR
AU  - W. Lawton
TI  - Global analysis of wavelet methods for Euler's equation
JO  - Matematičeskoe modelirovanie
PY  - 2002
SP  - 75
EP  - 88
VL  - 14
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2002_14_5_a6/
LA  - en
ID  - MM_2002_14_5_a6
ER  - 
%0 Journal Article
%A W. Lawton
%T Global analysis of wavelet methods for Euler's equation
%J Matematičeskoe modelirovanie
%D 2002
%P 75-88
%V 14
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2002_14_5_a6/
%G en
%F MM_2002_14_5_a6
W. Lawton. Global analysis of wavelet methods for Euler's equation. Matematičeskoe modelirovanie, Tome 14 (2002) no. 5, pp. 75-88. http://geodesic.mathdoc.fr/item/MM_2002_14_5_a6/