Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2002_14_5_a6, author = {W. Lawton}, title = {Global analysis of wavelet methods for {Euler's} equation}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {75--88}, publisher = {mathdoc}, volume = {14}, number = {5}, year = {2002}, language = {en}, url = {http://geodesic.mathdoc.fr/item/MM_2002_14_5_a6/} }
W. Lawton. Global analysis of wavelet methods for Euler's equation. Matematičeskoe modelirovanie, Tome 14 (2002) no. 5, pp. 75-88. http://geodesic.mathdoc.fr/item/MM_2002_14_5_a6/
[1] R. Abraham, J. E. Marsden, Foundations of Mechanics, Benjamin, London, 1978 | MR | Zbl
[2] V. I. Arnold, “Sur la geometrie differentielle des groups de Lie de dimension infinie et ses applications a l'hydrodynamique des fluids parfaits”, Ann. Inst. Grenoble, 16:1 (1966), 316–361 | MR
[3] V. I. Arnold, Mathematical Methods of Classical Mechanics, Springer, New York, 1978 | MR
[4] V. I. Arnold, Topological Methods in Hydrodynamics, Springer, New York, 1998 | MR
[5] C. Basdevant, T. Philipovitch, “On the validity of the “Weiss criterion” in two-dimensional turbulence”, Physica D, 73 (1994), 17–30 | DOI | MR | Zbl
[6] G. Battle, Note on divergence-free vector wavelets, Preprint, Texas A University
[7] G. Battle, “A block spin construction of ondelettes, Part I: Lemarie functions”, Comm. Math. Phys., 110 (1987), 601–615 | DOI | MR
[8] G. Battle, “A block spin construction of ondelettes, Part II: the QFT connection,”, Comm. Math. Phys., 114 (1988), 93–102 | DOI | MR
[9] G. Battle, “Phase space localization theorem for ondelettes”, J. of Math. Phys., 30 (1989), 2195–2196 | DOI | MR | Zbl
[10] G. Battle, “The wavelet $\varepsilon$-expansion and hausdorff dimension”, Spline functions and the theory of wavelets, eds. Serge Dubuc, Gilles Deslauriers, American Math. Soc., Providence, RI, 1999, 277–292 | MR | Zbl
[11] G. Battle, P. Federbrush, “Ondelettes and phase cluster expansions, a vindication”, Comm. Math. Phys., 109 (1987), 417–419 | DOI | MR
[12] G. Battle, P. Federbrush, “Divergence-free vector wavelets”, Michigan Mathematical J., 40 (1993), 181–195 | DOI | MR | Zbl
[13] G. Battle, P. Federbrush, P. Uhlig, “Wavelets for quantum gravity and divergence-free wavelets”, Appl. Comp. Harmonic Analysis, 1 (1993), 295–297 | DOI | MR
[14] Sh. Bromberg, A. Medina, “Completude de l'equation d'Euler”, Algebra and Operator Theory, Proceedings of the Colloquium in Tashkent, Kluwer, Boston, 1997, 127–144 | MR
[15] M. Cannone, Ondelletes, paraproduits et Navier–Stokes, Diderot Editeur, Art et Sciences, 1995 | MR | Zbl
[16] A. Connes, Noncommutative Geoemetry, Academic Press, New York, 1994 | MR | Zbl
[17] W. Dahmen, A. Kunoth, K. Urban, “Wavelets in numerical analysis and their quantitative properties”, Surface fitting and multiresolution methods, eds. Alain Le Mehaute, Christophe Rabut, Larry L. Schumaker, Vanderbilt University Press, Nashville, 1997, 93–130 | MR | Zbl
[18] E. Dean, R. Glowinski, “On some finite element methods for the numerical simulation of incompressible viscous flow”, Incompressible computational fluid dynamics: trends and advances, eds. Max D. Gunzburger, Roy A. Nicolaides, Cambridge University Press, New York, 1993, 17–66
[19] T. Dubois, F. Jauberteau, R. Temam, Dynamic multilevel methods and the numerical simulation of turbulence, Cambridge University Press, New York, 1999 | MR
[20] D. Ebin, J. Marsden, “Groups of diffeomorphisms and the motion of an incompressible fluid”, Annals of Mathematics, 92 (1970), 102–163 | DOI | MR | Zbl
[21] D. Elhmaidi, A. Provenzale, A. Babiano, “Elementary topology of two-dimensional turbulence from a Lagrangian viewpoint and single-particle dispersion”, J. of Fluid Mechanics, 257 (1993), 533–558 | DOI | Zbl
[22] L. Euler, “Theoria mot us corporum solidorum seu rigodorum ex primiis nostrae cognitionis principiis stbilita et ad onmes motus qui inhuiusmodi corpora cadere possunt accommodata”, Memoirs de l'Académie des Sciences Berlin, 1765
[23] L. Euler, “Commentationes mechanicae ad theoriam corporum fluidorum pertinentes”, Memoirs de l'Academie des Sciences Berlin, 1765
[24] D. B. Fairlie, C. K. Zachos, “Infinite dimensional algebras, sine brackets, and $SU(\infty)$”, Phys. Lett. B, 224:1–2 (1989), 101–107 | MR | Zbl
[25] D. B. Fairlie, P. Fletcher, C. K. Zachos, “Trigonometric structure constants for infinitedimensional algebras”, Phys. Lett. B, 218:2 (1989), 203–206 | DOI | MR | Zbl
[26] M. Farge, N. K. R. Kelvahan, V. Perrier, K. Schneider, “Turbulence analysis, modelling and computing using wavelets”, Wavelets Phys., ed. J. C. van den Berg, Cambridge University Press, 1999, 117–200 | MR
[27] P. Federbrush, “A phase cell approach to Yang-Mills theory. I: Modes, lattice-continuum duality”, Comm. Math. Phys., 107 (1986), 319–329 | DOI | MR
[28] P. Federbrush, “Quantum field theory in ninety minutes”, Bulletin of the American Mathematical Society, 17 (1987), 93–103 | DOI | MR
[29] P. Federbrush, “Navier and Stokes meet the wavelet”, Comm. Math. Phys., 155 (1993), 219–248 | DOI | MR
[30] C. L. Fefferman, Existence and smoothness of the Navier–Stokes equation, Clay Prize Report
[31] C. Foias, G. R. Sell, R. Teman, “Inertial manifolds for nonlinear evolutionary equations”, J. of Differential Equations, 73 (1988), 309–353 | DOI | MR | Zbl
[32] U. Frisch, Turbulence, Cambridge University Press, New York, 1995 | MR
[33] G. Furioli, P. G. Lemarié-Rieuseset, E. Terrano, “Sur l'unicité dans $L^3(\mathbb R^3)$ des solutions mild des equations de Navier–Stokes”, C. R. Acad. Sci. Paris, 325 (1997) | MR | Zbl
[34] G. Haller, G. Yuan, “Lagrangian coherent structures and mixing in two-dimensional turbulence”, Physics D, 147 (2000), 352–370 | DOI | MR | Zbl
[35] S. Helgason, Differential Geometry and Symmetric Spaces, Academic Press, New York, 1962 | MR | Zbl
[36] R. Hermann, “Geodesies and classical mechanics on Lie groups”, J. of Math. Phys., 13 (1972), 460–464 | DOI | MR | Zbl
[37] D. Hestenes, New Foundations for Classical Mechanics, Kluwer, Boston, 1999 | MR | Zbl
[38] P. Holmes, J. L. Lumley, G. Berkooz, Turbulence, Coherent Structures, Dynamical Systems, and Symmetry, Cambridge University Press, Cambridge, 1996 | MR | Zbl
[39] L. Hudggins and J. H. Kaspersen, “Wavelets and detection of coherent structures in fluid turbulence”, Wavelets in Physics, eds. J. C. van den Berg, Cambridge University Press, 1999, 201–226 | MR
[40] K. Kishida, K. Araki, S. Kishiba, K. Suzuki, “Local or nonlocal? Orthonormal divergence-free wavelet analysis of nonlinear interactions in turbulence”, Phys. Rev. Lett., 83:26 (1999), 5487–5490 | DOI
[41] A. N. Kolmogorov, Dokl. Acad. Nauk SSSR, 30 (1941), 299 ; Physics of Fluids, 10 (1967), 1417–1423 | DOI
[42] R. H. Kraichnan, “Inertial ranges in two-dimensional turbulence”, Physics of Fluids, 10 (1967), 1417–1423 | DOI
[43] R. H. Kraichnan, “On Kolmogorov's inertial-range theories”, Physics of Fluids, 62 (1974), 305–330 | Zbl
[44] R. H. Kraichnan, “Statistical dynamics of two-dimensional flow”, J. Fluid Mechanics, 67 (1975), 155–175 | DOI | Zbl
[45] W. Lawton, L. Noakes, “Computing the inertia operator of a rigid body”, J. of Math. Phys., 42:4 (2001), 1–11 | DOI | MR
[46] J. D. Lakey, M. C. Pereyra, “Divergence-free multiwavelets on rectangular domains”, Wavelet analysis and multiresolution methods : proceedings of the conference (Champaighn-Urbana, Illinois), ed. Tian-Xiao He, Marcel Dekker, New York, 2000, 203–240 | MR | Zbl
[47] W. Lawton, D. Creamer, P. Lin, J. Weiss, Strain, Vorticity and Turbulence, Proposal to the Academic Research Fund, National University of Singapore, 2001
[48] W. Lawton, “The inverse problem for Euler's equation on two and three dimensional Lie groups”, Proceedings of the Progress in Mathematics Conference (December 12–13, 2000), Department of Mathematics, Faculty of Science, Mahidol University, Bangkok, Thailand
[49] P. G. Lemarie, “Ondelettes a localisation exponentielle”, J. Mat. Pure et Appl., 67 (1988), 227–236 | MR | Zbl
[50] P. G. Lemarié-Rieuseset, “Analyses multirésolutions non orthogonales, commutator entre projecteur et derivation et ondelettes a divergence nulle”, Revista Matematica Iberoamericana, 8 (1992), 221–236 | MR
[51] P. G. Lemarié-Rieuseset, “Un théorèm d'inexistence pour les ondelettes vecteurs á divergence nulle”, C. R. Acad. Sci. Paris Sér. I Math., 319 (1994), 811–813 | MR
[52] A. Majda, Vorticity and the mathematical theory of incompressible fluid flow, Cambridge University Press, New York, 2001
[53] C. Marchioro, M. Pulvirenti, Mathematical Theory of Incompressible Nonviscous Fluids, Springer-Verlag, New York, 1994 | MR
[54] J. E. Marsden, T. S. Ratiu, S. Shkoller, “The geometry and analysis of the averaged euler equations and a new diffeomorphism group”, Geometry and Functional Analysis, 10 (2000), 582–599 | DOI | MR | Zbl
[55] Y. Meyer, Wavelets and Operators, Cambridge University Press, 1992 | MR
[56] Y. Meyer, R. Coifman, Wavelets: Calderon–Zygmund and multilinear operators, Cambridge University Press, 1997 | MR
[57] J. Milnor, “Curvatures of left invariant metrics on Lie groups”, Adv. Math., 21 (1976), 293–329 | DOI | MR | Zbl
[58] A. S. Mishchenko, “Integrals of geodesic flows on Lie groups”, Functional Analysis and Its Applications, 4:3 (1970), 232–235 | DOI | MR | Zbl
[59] C. Misiolek, “A shallow water equation as a geodesic flow on the Bott–Virasoro group”, J. of Geometric Phys., 24 (1998), 203–208 | DOI | MR | Zbl
[60] J. J. Moreau, “Une méthod de “cinematique fonctionnelle” en hydrodynamique”, C. R. Acad. Sci. Paris, 249 (1959), 2156–2158 | MR | Zbl
[61] A. Okubo, “Horizontal dispersion of floatable trajectories in the vicinity of velocity singularities such as convergencies”, Deep-Sea Research, 17 (1970), 445–454
[62] L. Onsager, “Statistical hydrodynamics”, Nuovo Cimento, 6 suppl (1949), 279–287 | DOI | MR
[63] A. M. Polyakov, “Conformal turbulence”, Nuclear Physics B, 396 (1993), 367 | DOI | MR
[64] A. Pressley, G. Segal, Loop Groups, Clarendon Press, Oxford, 1986 | MR | Zbl
[65] D. Ruelle, F. Takens, “On the nature of turbulence”, Comm. Math. Phys., 20 (1970), 167–192 | DOI | MR
[66] R. Salmon, Geophysical Fluid Dynamics, Oxford University Press, 1998 | MR
[67] G. E. Shilov, Linear Algebra, Prentice-Hall, New Jersey, 1971 | MR | Zbl
[68] S. Shkoller, “Smooth global lagrangian flow for the 2D euler and second-grade fluid equations”, Appl. Math. Lett., 14 (2001), 539–543 | DOI | MR | Zbl
[69] S. Shkoller, “The anisotropic lagrangian averaged Euler equations”, Archives for Rational Mechanics, 2001 (to appear)
[70] S. Shkoller, “Review of Topological methods in hydrodynamics”, Bulletin of the AMS, 37 (2000), 175–181 | DOI
[71] D. H. Sattinger, O. L. Weaver, Lie Groups and Algebras with Applications to Physics, Geometry, and Mechanics, Springer-Verlag, New York, 1986 | MR | Zbl
[72] A. Shnirelman, “On the nonuniqueness of weak solutions of the Euler equation”, Comm. Pure and Appl. Math., 50 (1997), 1260–1286 | 3.0.CO;2-6 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR
[73] M. M. Stanisic, The Mathematical Theory of Turbulence, Springer, New York, 1985 | MR | Zbl
[74] K. Urban, “On divergence-free wavelets”, Adv. Comp. Math., 4 (1995), 51–82 | DOI | MR
[75] K. Urban, “Wavelet bases in $H(\mathrm{div})$ and $H(\mathrm{curl})$”, Mathematics of Computation (to appear)
[76] V. S. Varadarajan, Lie Groups, Lie Algebras, and Their Representations, Springer-Verlag, New York, 1984 | MR
[77] J. Weiss, The dynamics of enstrophy transfer in two-dimensional hydrodynamics, La Jolla Institute Technical Report LJI-TN-81-124, 1981
[78] J. Weiss, “The dynamics of enstrophy transfer in two-dimensional hydrodynamics”, Physica D, 48 (1991), 273–294 | DOI | MR | Zbl
[79] S. Qian, J. Weiss, “Wavelets and the numerical solution of partial differential equations”, J. of Comput. Phys., 106 (1993), 155–175 | DOI | MR | Zbl
[80] V. Zeitlin, “Finite-mode analogs of 2D ideal hydrodynamics: Coadjoint orbits and local canonical structure”, Physica D, 49 (1991), 353–362 | DOI | MR | Zbl