Positive operators based on scaling functions
Matematičeskoe modelirovanie, Tome 14 (2002) no. 5, pp. 116-126

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider linear operators of Bernstein–Schoenberg type, constructed on B-bases, generated from a finite system of integer shifts of a scaling function (or refinable function), belonging to a large class of totally positive scaling functions introduced in [9]. These operators where introduced in [12], where their $L^2$ approximation properties were discussed. Here we examine their spectral properties and best least square approximations.
@article{MM_2002_14_5_a11,
     author = {L. Gori and F. Pitolli and E. Santi},
     title = {Positive operators based on scaling functions},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {116--126},
     publisher = {mathdoc},
     volume = {14},
     number = {5},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2002_14_5_a11/}
}
TY  - JOUR
AU  - L. Gori
AU  - F. Pitolli
AU  - E. Santi
TI  - Positive operators based on scaling functions
JO  - Matematičeskoe modelirovanie
PY  - 2002
SP  - 116
EP  - 126
VL  - 14
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2002_14_5_a11/
LA  - ru
ID  - MM_2002_14_5_a11
ER  - 
%0 Journal Article
%A L. Gori
%A F. Pitolli
%A E. Santi
%T Positive operators based on scaling functions
%J Matematičeskoe modelirovanie
%D 2002
%P 116-126
%V 14
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2002_14_5_a11/
%G ru
%F MM_2002_14_5_a11
L. Gori; F. Pitolli; E. Santi. Positive operators based on scaling functions. Matematičeskoe modelirovanie, Tome 14 (2002) no. 5, pp. 116-126. http://geodesic.mathdoc.fr/item/MM_2002_14_5_a11/