Positive operators based on scaling functions
Matematičeskoe modelirovanie, Tome 14 (2002) no. 5, pp. 116-126.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider linear operators of Bernstein–Schoenberg type, constructed on B-bases, generated from a finite system of integer shifts of a scaling function (or refinable function), belonging to a large class of totally positive scaling functions introduced in [9]. These operators where introduced in [12], where their $L^2$ approximation properties were discussed. Here we examine their spectral properties and best least square approximations.
@article{MM_2002_14_5_a11,
     author = {L. Gori and F. Pitolli and E. Santi},
     title = {Positive operators based on scaling functions},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {116--126},
     publisher = {mathdoc},
     volume = {14},
     number = {5},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2002_14_5_a11/}
}
TY  - JOUR
AU  - L. Gori
AU  - F. Pitolli
AU  - E. Santi
TI  - Positive operators based on scaling functions
JO  - Matematičeskoe modelirovanie
PY  - 2002
SP  - 116
EP  - 126
VL  - 14
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2002_14_5_a11/
LA  - ru
ID  - MM_2002_14_5_a11
ER  - 
%0 Journal Article
%A L. Gori
%A F. Pitolli
%A E. Santi
%T Positive operators based on scaling functions
%J Matematičeskoe modelirovanie
%D 2002
%P 116-126
%V 14
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2002_14_5_a11/
%G ru
%F MM_2002_14_5_a11
L. Gori; F. Pitolli; E. Santi. Positive operators based on scaling functions. Matematičeskoe modelirovanie, Tome 14 (2002) no. 5, pp. 116-126. http://geodesic.mathdoc.fr/item/MM_2002_14_5_a11/

[1] J. M. Carnicer, J. M. Pena, “Totally positive bases for shape preserving curves design and optimality of $\mathrm{B}$-splines”, Comput. Aided Geom. Design, 11 (1994), 633–654 | DOI | MR

[2] C. K. Chui, An introduction to wavelets, Academic Press, San Diego, Ca, 1992 | MR

[3] M. Cotronei, M. L. Lo Cascio, “On the construction and behaviour of a general class of biorthogonal filters”, Proceedings of AMCTM 2000, Lisbona, in press

[4] W. Gautschi, L. Gori, F. Pitolli, “Gaussian quadrature rules for refinable weights functions”, Appl. Comput. Harmon. Anal., 8 (2000), 249–257 | DOI | MR | Zbl

[5] T. N. Y. Goodman, “Bernstein–Schoenberg operators”, Mathematical Methods for Curves and Surfaces, eds. M. Dahlen, T. Lyche, L. L. Schumacher, Vanderbilt University Press, Nashville, TN, 1995, 161–175 | MR | Zbl

[6] T. N. T. Goodman, “Total positivity and the shape of curves”, Total Positivity and its Applications, eds. M. Gasca, C. A. Micchelli, Kluwer Academic Publishers, 1996, 157–186 | MR | Zbl

[7] L. Gori, L. Pezza, F. Pitolli, “A class of totally positive blending $\mathrm B$-bases”, Curve and Surface Design (Saint Malo 1999), eds. P.-J. Laurent, P. Sablonnière, L. L. Schumaker, Vanderbilt University Press, Nashville, TN, 2000, 119–126

[8] L. Gori, F. Pitolli, L. Pezza, On the Galerkin method based on a particular class of scaling functions, submitted

[9] L. Gori, F. Pitolli, “Multiresolution analysis based on certain compactly supported refinable functions”, Approximation and Optimization (Cluj-Napoca, 1996), eds. G. Coman, W. W. Breckner, P. Blaga, Transilvania Press, Cluj-Napoca, 1997, 81–90 | MR | Zbl

[10] L. Gori, F. Pitolli, “A class of totally positive refinable functions”, Rendiconti di Matematica, Serie VII, 20 (2000), 305–322 | MR | Zbl

[11] L. Gori, F. Pitolli, “On some applications of a class of totally positive bases”, Proceeding of International Conference on Wavelet Anlysis and its Applications, Guangzhou, China, 1999

[12] L. Gori, F. Pitolli, E. Santi, “Positive wavelet operators”, Numer. Algorithms, in press

[13] Karlin S., Total positivity, Stanford University Press, Stanford, 1968 | MR

[14] F. Pitolli, “Refinement masks of Hurwitz type in the cardinal interpolation problem”, Rendiconti di Matematica, Serie VII, 18 (1998), 549–563 | MR | Zbl

[15] P. Sablonnière, “Positive spline operators and orthogonal splines”, J. Approx. Theory, 54 (1988), 28–42 | DOI | MR

[16] I. J. Schoenberg, “Notes on spline functions orthogonal or Legendre splines”, J. Approx. Theory, 13 (1975), 84–104 | DOI | MR | Zbl

[17] L. L. Schumaker, Spline functions: basic theory, John Wiley and Sons, New York, 1981 | MR | Zbl