Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2002_14_5_a10, author = {O. V. Davydov}, title = {On local refinement of smooth finite elements and splines}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {109--115}, publisher = {mathdoc}, volume = {14}, number = {5}, year = {2002}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2002_14_5_a10/} }
O. V. Davydov. On local refinement of smooth finite elements and splines. Matematičeskoe modelirovanie, Tome 14 (2002) no. 5, pp. 109-115. http://geodesic.mathdoc.fr/item/MM_2002_14_5_a10/
[1] O. Davydov, “Stable local bases for multivariate spline spaces”, J. Approx. Theory (to appear)
[2] O. Davydov, “On the computation of stable local bases for bivariate polynomial splines”, Trends in Approximation Theory, eds. K. Kopotun, T. Lyche, M. Neamtu, Vanderbilt University Press (to appear) | MR
[3] O. Davydov, Locally stable spline bases on nested triangulations, manuscript, 2001 | MR
[4] \уто O. Davydov, L. L. Schumaker, “Stable local nodal bases for $C^1$ bivariate polynomial splines”, Curve and Surface Fitting: Saint-Malo 1999, eds. A. Cohen, C. Rabut, L. L. Schumaker, Vanderbilt University Press, 2000, 171–180
[5] O. Davydov, L. L. Schumaker, “On stable local bases for bivariate polynomial spline spaces”, Constr. Approx. (to appear) | MR