Invariance considerations in calibration problem of measurement computer systems
Matematičeskoe modelirovanie, Tome 14 (2002) no. 4, pp. 45-56.

Voir la notice de l'article provenant de la source Math-Net.Ru

Many modern measurement systems, producing a large amounts of data (e.g. image generation system) are invariant with respect to a certain group of transformations. Proper allowance for this invariance offers a way to substantially simplify the development of an optimal measurement computer system. An optimal linear measurement computer system synthesis problem is one of obtaining an optimal processing map (determining processing algorithm) with a specified influence function support. The problem rises to a qualitatively new level if an information about measurement system is not precise enough. In such situations problem of an optimal calibration is stated. It consists in generating of a calibration map, converting calibration data (i.e. results of measurements of known signals) to processing map in an optimal way. It appears that if measurement system possesses high level of invariance the solution of both problems can be significantly simplified. Note that a processing map and the degree of complexity in obtaining it are independent of the amount of data to be processed.
@article{MM_2002_14_4_a3,
     author = {P. V. Golubtsov and O. V. Starikova},
     title = {Invariance considerations in calibration problem of measurement computer systems},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {45--56},
     publisher = {mathdoc},
     volume = {14},
     number = {4},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2002_14_4_a3/}
}
TY  - JOUR
AU  - P. V. Golubtsov
AU  - O. V. Starikova
TI  - Invariance considerations in calibration problem of measurement computer systems
JO  - Matematičeskoe modelirovanie
PY  - 2002
SP  - 45
EP  - 56
VL  - 14
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2002_14_4_a3/
LA  - ru
ID  - MM_2002_14_4_a3
ER  - 
%0 Journal Article
%A P. V. Golubtsov
%A O. V. Starikova
%T Invariance considerations in calibration problem of measurement computer systems
%J Matematičeskoe modelirovanie
%D 2002
%P 45-56
%V 14
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2002_14_4_a3/
%G ru
%F MM_2002_14_4_a3
P. V. Golubtsov; O. V. Starikova. Invariance considerations in calibration problem of measurement computer systems. Matematičeskoe modelirovanie, Tome 14 (2002) no. 4, pp. 45-56. http://geodesic.mathdoc.fr/item/MM_2002_14_4_a3/

[1] Golubtsov P. V., Filatova S. A., “Optimalnaya lokalnaya reduktsiya dlya prostranstvenno-invariantnykh izmeritelnykh sistem”, Matem. modelirovanie, 2:10 (1990), 61–66 | MR | Zbl

[2] Filatova S. A., Golubtsov P. V., “Invariant Measurement Computer Systems”, Pattern Recognition and Image Analysis, 1:2 (1991), 224–235

[3] Filatova S. A., Golubtsov P. V., “Invariance and Synthesis of Optimum Image Formation Measurement Computer Systems”, Artificial Intelligence, Expert Systems and Symbolic Computing, eds. E. N. Houstis, J. R. Rice, Elsevier Science Publishers, 1992, 243–252

[4] Filatova S. A., Golubtsov P. V., “Invariance Considerations in Design of Image Formation Measurement Computer Systems”, Automatic Object Recognition, III, Proceedings of SPIE, 1960, ed. Firooz A. Sadjadi, 1993, 483–494

[5] Golubtsov P. V., Pytev Yu. P., Chulichkov A. I., “Postroenie operatora reduktsii po testovym izmereniyam”, Diskretnye sistemy obrabotki informatsii, Udmurtskii gos. un-t, Ustinov, 1986, 68–71

[6] Golubtsov P. V., Pytev Yu. P., Chulichkov A. I., “Zadacha optimalnoi reduktsii v fizicheskom eksperimente”, Vestn. Mosk. un-ta. Ser. 3. Fiz. Astron., 27:2 (1986), 8–12 | MR

[7] Pytev Yu. P., Matematicheskie metody interpretatsii eksperimenta, Vysshaya shkola, M., 1989

[8] Pytev Yu. P., “Psevdoobratnyi operator. Svoistva i primenenie”, Matem. sb., 118(160):1(5) (1982), 19–49 | MR

[9] Leng S., Algebra, Mir, M., 1968

[10] Kostrikin A. I., Vvedenie v algebru. Osnovy algebry, Fizmatlit, M., 1994 | MR | Zbl

[11] Armstrong M. A., Groups and Symmetry, Springer-Verlad, New York, 1988 | MR | Zbl

[12] Barra Zh. -R., Osnovnye ponyatiya matematicheskoi statistiki, Mir, M., 1974 | MR | Zbl

[13] Neve Zh., Matematicheskie osnovy teorii veroyatnosti, Mir, M., 1969 | MR | Zbl

[14] Borovkov A. A., Matematicheskaya statistika, Dopolnitelnye glavy, Nauka, M., 1984 | MR

[15] Golubtsov P. V., “Aksiomaticheskoe opisanie kategorii preobrazovatelei informatsii”, Problemy peredachi informatsii, 35:3, 80–98 | MR | Zbl

[16] Shiryaev A. P., Veroyatnost, Nauka, M., 1980 | MR | Zbl