Optical breakdown of aluminum vapor in the ultraviolet range
Matematičeskoe modelirovanie, Tome 14 (2002) no. 4, pp. 3-20.

Voir la notice de l'article provenant de la source Math-Net.Ru

Theoretical analysis of the evolution of nonequilibrium plasma in the ultraviolet spectrum of the laser radiation field was carried out. The frequency dependence of threshold values of the intensity and the principal mechanisms of nonequilibrium ionization of aluminum vapor in the radiation range under investigation were determined by mathematical modeling. The dominant role of photo-processes, namely resonant and non-resonant photoexcitation and photoionization, was shown. Comparison of modeling results with experimental data on optical breakdown of aluminum vapor by the eximer laser radiation in nanosecond and microsecond range was shown to be in good agreement.
@article{MM_2002_14_4_a0,
     author = {V. I. Mazhukin and V. V. Nosov and M. G. Nikiforov and I. Yu. Smurov},
     title = {Optical breakdown of aluminum vapor in the ultraviolet range},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {3--20},
     publisher = {mathdoc},
     volume = {14},
     number = {4},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2002_14_4_a0/}
}
TY  - JOUR
AU  - V. I. Mazhukin
AU  - V. V. Nosov
AU  - M. G. Nikiforov
AU  - I. Yu. Smurov
TI  - Optical breakdown of aluminum vapor in the ultraviolet range
JO  - Matematičeskoe modelirovanie
PY  - 2002
SP  - 3
EP  - 20
VL  - 14
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2002_14_4_a0/
LA  - ru
ID  - MM_2002_14_4_a0
ER  - 
%0 Journal Article
%A V. I. Mazhukin
%A V. V. Nosov
%A M. G. Nikiforov
%A I. Yu. Smurov
%T Optical breakdown of aluminum vapor in the ultraviolet range
%J Matematičeskoe modelirovanie
%D 2002
%P 3-20
%V 14
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2002_14_4_a0/
%G ru
%F MM_2002_14_4_a0
V. I. Mazhukin; V. V. Nosov; M. G. Nikiforov; I. Yu. Smurov. Optical breakdown of aluminum vapor in the ultraviolet range. Matematičeskoe modelirovanie, Tome 14 (2002) no. 4, pp. 3-20. http://geodesic.mathdoc.fr/item/MM_2002_14_4_a0/

[1] W. W. Duley, UV Lasers: effects and applications in materials science, Cambridge University Press, 1996

[2] M. Humphries, H. J. Kahbert, K. Pippert, The eximer laser on its way to industrial application. Laser in manufacture, ed. M. M. Steen, Springer, London, 1987

[3] L. Berthe, R. Fabbro, P. Peyre, E. Bartnicki, J. Appl. Phys., 85 (1999), 7552 | DOI

[4] R. Fabbro, P. Peyre, L. Berthe, A. Sollier, E. Bartnicki, SPIE Proc., 155 (2000), 3888

[5] V. I. Mazhukin, I. V. Gusev, I. Smurov, G. Flamant, “Laser-Induced Breakdown of Metal Vapor”, Microchemical J., 50 (1994), 413–433 | DOI

[6] V. I. Mazhukin, V. V. Nossov, I. Smurov, G. Flamant, “Analysis of nonequilibrium phenomena during interaction of laser radiation with metal vapors”, Surveys on Mathematics for Industry, 10:1 (2001), 45–82 | MR | Zbl

[7] Ja. B. Ze'dovich, Yu. P. Raizer, Physics of shock waves and high-temperature gas dynamic phenomena, Science, M., 1966

[8] Yu. P. Raizer, Fizika gazovogo razryada, Nauka, M., 1987

[9] H. Schittenhelm, G. Callies, P. Berger, H. Hügel, “Investigations of extinction coefficients during excimer laser ablation and their interpretation in terms of Rayleigh scattering”, J. Phys. D: Appl.Phys., 29 (1996), 1564–1575 | DOI

[10] H. Schittenhelm, G. Callies, P. Berger, H. Hügel, “Time-resolved interferometric investigations of the KrF-laser – induced interaction zone”, Appl. Surface Science, 109–110 (1997), 494–497 | DOI

[11] D. I. Rosen, J. Mitteldorf, G. Kothandaraman et al., “Coupling of pulsed 0.35 $\mu m$ laser radiation to aluminum alloys”, J. Appl. Phys., 53 (1982), 3190 | DOI

[12] V. P. Ageev, A. A. Gorbunov, V. I. Konov i dr., “Nagrev metallov nanosekundnymi impulsami izlucheniya $XeF$-lazera s obrazovaniem pripoverkhnostnoi plazmy”, Kvantovaya elektronika, 10:7 (1983), 1466–1469

[13] V. P. Ageev, A. A. Gorbunov, V. P. Danilov i dr., “Porogovye usloviya plazmoobrazovaniya pri vozdeistvii na tverdye misheni impulsnogo UF izlucheniya”, Kvantovaya elektronika, 10:12 (1983), 2451–2456

[14] E. O. Danilov, V. A. Danilychev, V. A. Dolgikh i dr., “Struktura poverkhnosti mishenei i nachalnaya stadiya ispareniya pod deistviem impulsov izlucheniya $KrF$-lazera”, Kvantovaya elektronika, 15:12 (1988), 2560–2567

[15] E. O. Danilov, V. A. Danilychev, V. A. Dolgikh i dr., “Isparenie mishenei i formirovanie voln pogloscheniya v vozdukhe pod deistviem UF lazernogo izlucheniya”, Kvantovaya elektronika, 15:12 (1988), 2568–2577

[16] G. M. Weyl, D. I. Rosen, “Laser – inducted break – down in argon at 0.35 $\mu m$: Theory and experiment”, Phys. Rev. A, 31:4 (1985), 2300–2313 | DOI

[17] K. Kadawa, S. Yokoi, S. Nakajima, “Metal plasma inducted by the bombardment of 308 nm eximer and 585 dye laser pulses at low pressure”, Opt. Commun., 45:4 (1983), 261–265 | DOI

[18] G. Weyl, A. Pirri, R. Root, “Laser Ignition of Plasma off Aluminium Surfaces”, AIAA J., 10:4 (1981), 460–469 | DOI

[19] D. I. Rosen, D. E. Hastings, G. M. Weyl, J. App. Phys., 53 (1982), 5882 | DOI

[20] A. N. Pirri, R. G. Root, P. K. S. Wu, “Plasma Energy Transfer to Metal Surfaces Irradiated by Pulsed Lasers”, AIAA J., 16:12 (1978), 1296–1304 | DOI

[21] A. M. Popov, Zhurn. Tekhn. fiziki, 52 (1982), 2105

[22] M. Ignatavichus, E. Kazakiavichus, G. Orshevsky, V. Danunas, Kvantovaia elektronika, 18:11 (1991), 1325–1328

[23] M. Mitchner, C. H. Kruger, Partially Ionized Gases, Wiley, New York, 1973

[24] W. J. Wiese, M. W. Smith, B. M. Miles, Transition probabilities, V. 2, NBS, Washington, 1969

[25] C. W. Allen, Astrophysical quantities, University of London, The Athlone Press, 1973

[26] H. Van Regemorter, “Rate of collisional excitation in stellear atmospheres”, Astrophys. J., 132 (1962), 906

[27] R. Mewe, Astronomy Astrophysics, 20 (1972), 256–277

[28] W. Lotz, “Electron-impact ionization cross – section for atoms up to $z=108$”, Zs. Physic, 232 (1970), 101 | DOI

[29] W. Lotz, Astrophys. J., 14 Suppl. (1967), 207–214 | DOI | MR

[30] A. Burgess, M. J. Seaton, Rev. Mod. Phys., 30:3 (1958), 992–993 | DOI | MR

[31] A. Burgess, M. J. Seaton, Monthly Notices Roy Astron. Soc., 120 (1960), 121 | MR | Zbl

[32] V. I. Derzhiev, A. G. Zhidkov, S. I. Yakovlenko, Izluchenie ionov v neravnovesnoi plotnoi plazme, Energoatomizdat, M., 1986

[33] S. I. Yakovlenko, Radiatsionno-stolknovitelnye yavleniya, Energoatomizdat, M., 1984

[34] H. R. Griem, Plasma Spectroscopy, McCraw-Hill, New York, 1964

[35] L. A. Vainshtein, I. I. Sobelman, E. A. Yukov, Vozbuzhdenie atomov i ushirenie spektralnykh linii, Nauka, M., 1979

[36] M. Venugopalan (ed.), Reactions Under Plasma Conditions, V. 1, Wiley Interscience, New York, 1971

[37] V. Veiskopf, “Shirina spektralnykh linii v gazakh”, Usp. fiz. nauk, 13:4 (1933), 552–592

[38] Plasma diagnostics, eds. W. Lochte-Holtgreven, Kiel Univ., Amsterdam, 1968

[39] L. M. Biberman, G. E. Norman, “Nepreryvnye spektry atomarnykh gazov i plazmy”, Usp. fiz. nauk, 91:4 (1967), 193–246

[40] C. W. Gear, “The numerical integration of ordinary differential equations”, Math. Comp., 21 (1967), 146–156 | DOI | MR | Zbl

[41] C. D. Byrne, A. C. Hindmarsh, “Stiff ODE Solvers: A Review of Current and Coming Attractions”, J. Comp. Phys., 70 (1987), 1–62 | DOI | MR | Zbl

[42] E. Hairer, S. P. Norsett, G. Wanner, Solving Ordinary Differential Equation {. 1}. Nonstiff Problems, Springer-Verlag, Berlin, 1989

[43] E. Hairer, S. P. Norsett, G. Wanner, Solving Ordinary Differential Equation {. 2}. Stiff Problems, Springer-Verlag, Berlin, 1991 | MR | Zbl

[44] C. W. Gear, “DIFSUB for Solution of Ordinary Differential Equations”, Com. Assoc. Comput. Machinery, 14:3, 185–190 | MR

[45] A. C. Hindmarsh, C. D. Byrne, “Applications of EPISOD. An Experimental Package for the Integration of Systems of Ordinary Differential Equations”, Numerical Methods for Differential Systems, eds. L. Lapidus, W. E. Schiesser, Academic Press, 1976, 147–166 | MR

[46] A. C. Hindmarsh, “LSODE and LSODI. Two New Initial Value ODE Solvers”, ACM-SIGNUM Newsletter, 15:4 (1980), 10–11 | DOI

[47] C. J. Knight, “Theoretical modelling of rapid surface vaporisation with back pressure”, AIAA J., 17:5 (1979), 519–523 | DOI | MR