Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2002_14_3_a9, author = {V. L. Leont'ev}, title = {Orthogonal splines and variational-grid method}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {117--127}, publisher = {mathdoc}, volume = {14}, number = {3}, year = {2002}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2002_14_3_a9/} }
V. L. Leont'ev. Orthogonal splines and variational-grid method. Matematičeskoe modelirovanie, Tome 14 (2002) no. 3, pp. 117-127. http://geodesic.mathdoc.fr/item/MM_2002_14_3_a9/
[1] Daubechies I., “Orthonormal bases of compactly supported wavelets”, Comm. on Pure and Applied Math., 41 (1988), 909–996 | DOI | MR | Zbl
[2] Leontjew V. L., Ziplow M. P., “Über eine projektionen netzlichen Methode, die mit der Anwendung der miteinander orthogonalen ununterbrochen en Basisfunktionen mit dem endlichen Trager verknupfen ist”, Des. I Russisch-Deutschen Symposiums “Intelligente informationstechnologien in der entscheidungsfindung” (24–28 November 1995, Moskau), 169–173
[3] Leontev V. L., Lukashanets N. Ch., “O setochnykh bazisakh ortogonalnykh finitnykh funktsii”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 39:7 (1999), 1158–1168 | MR
[4] Marchuk G. I., Agoshkov V. I., Vvedenie v proektsionno-setochnye metody, Nauka, M., 1981 | MR
[5] Rozin L. A., Variatsionnye postanovki zadach dlya uprugikh sistem, Izd-vo Leningr. un-ta, L., 1978 | MR | Zbl
[6] Leontev V. L., Metod konechnykh elementov teorii uprugosti (smeshannye variatsionnye formulirovki), Izd-vo Srednevolzhskogo nauchn. tsentra, Ulyanovsk, 1998
[7] Timoshenko S. P., Voinovskii-Kriger S., Plastiny i obolochki, Fizmatlit, M., 1963