Orthogonal splines and variational-grid method
Matematičeskoe modelirovanie, Tome 14 (2002) no. 3, pp. 117-127.

Voir la notice de l'article provenant de la source Math-Net.Ru

The system of orthogonal splines connected to a sequence of grids is offered. It is shown, that it forms basis in space of functions; the estimation of an accuracy of approximation is resulted. The variationalgrid method of the theory of elastic plates based on use of the mixed variational principle and orthogonal splines is offered. The advantages of a method are derivated by orthogonal finite basic functions. Their connection with triangular grids allows to solve tasks for areas with curvilinear boundaries. The accounts, executed on the computer, have shown efficiency of a method.
@article{MM_2002_14_3_a9,
     author = {V. L. Leont'ev},
     title = {Orthogonal splines and variational-grid method},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {117--127},
     publisher = {mathdoc},
     volume = {14},
     number = {3},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2002_14_3_a9/}
}
TY  - JOUR
AU  - V. L. Leont'ev
TI  - Orthogonal splines and variational-grid method
JO  - Matematičeskoe modelirovanie
PY  - 2002
SP  - 117
EP  - 127
VL  - 14
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2002_14_3_a9/
LA  - ru
ID  - MM_2002_14_3_a9
ER  - 
%0 Journal Article
%A V. L. Leont'ev
%T Orthogonal splines and variational-grid method
%J Matematičeskoe modelirovanie
%D 2002
%P 117-127
%V 14
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2002_14_3_a9/
%G ru
%F MM_2002_14_3_a9
V. L. Leont'ev. Orthogonal splines and variational-grid method. Matematičeskoe modelirovanie, Tome 14 (2002) no. 3, pp. 117-127. http://geodesic.mathdoc.fr/item/MM_2002_14_3_a9/

[1] Daubechies I., “Orthonormal bases of compactly supported wavelets”, Comm. on Pure and Applied Math., 41 (1988), 909–996 | DOI | MR | Zbl

[2] Leontjew V. L., Ziplow M. P., “Über eine projektionen netzlichen Methode, die mit der Anwendung der miteinander orthogonalen ununterbrochen en Basisfunktionen mit dem endlichen Trager verknupfen ist”, Des. I Russisch-Deutschen Symposiums “Intelligente informationstechnologien in der entscheidungsfindung” (24–28 November 1995, Moskau), 169–173

[3] Leontev V. L., Lukashanets N. Ch., “O setochnykh bazisakh ortogonalnykh finitnykh funktsii”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 39:7 (1999), 1158–1168 | MR

[4] Marchuk G. I., Agoshkov V. I., Vvedenie v proektsionno-setochnye metody, Nauka, M., 1981 | MR

[5] Rozin L. A., Variatsionnye postanovki zadach dlya uprugikh sistem, Izd-vo Leningr. un-ta, L., 1978 | MR | Zbl

[6] Leontev V. L., Metod konechnykh elementov teorii uprugosti (smeshannye variatsionnye formulirovki), Izd-vo Srednevolzhskogo nauchn. tsentra, Ulyanovsk, 1998

[7] Timoshenko S. P., Voinovskii-Kriger S., Plastiny i obolochki, Fizmatlit, M., 1963