Cycled indices of ecosystems
Matematičeskoe modelirovanie, Tome 14 (2002) no. 3, pp. 84-102.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of calculation of cycled matter flows in an ecosystem is solved on the base of a compartmental model of the ecosystem. Different cycled indices are analysed. Dependences of cycled flows and the cycled indices on calculation methods and a structure of the ecosystem are investigated.
@article{MM_2002_14_3_a7,
     author = {O. V. Fel'dman},
     title = {Cycled indices of ecosystems},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {84--102},
     publisher = {mathdoc},
     volume = {14},
     number = {3},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2002_14_3_a7/}
}
TY  - JOUR
AU  - O. V. Fel'dman
TI  - Cycled indices of ecosystems
JO  - Matematičeskoe modelirovanie
PY  - 2002
SP  - 84
EP  - 102
VL  - 14
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2002_14_3_a7/
LA  - ru
ID  - MM_2002_14_3_a7
ER  - 
%0 Journal Article
%A O. V. Fel'dman
%T Cycled indices of ecosystems
%J Matematičeskoe modelirovanie
%D 2002
%P 84-102
%V 14
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2002_14_3_a7/
%G ru
%F MM_2002_14_3_a7
O. V. Fel'dman. Cycled indices of ecosystems. Matematičeskoe modelirovanie, Tome 14 (2002) no. 3, pp. 84-102. http://geodesic.mathdoc.fr/item/MM_2002_14_3_a7/

[1] Yu. Odum, Osnovy ekologii, Mir, M., 1975

[2] C. F. Jordan, J. R. Kline, D. E. Sasscer, “Relative stability of mineral cycles in forest ecosystems”, Am. Nat., 106 (1972), 237–253 | DOI

[3] J. T. Finn, “Measures of ecosystem structure and function derived from analysis of flows”, J. Theor. Biol., 56 (1976), 363–380 | DOI

[4] R. F. Dame, B. C. Patten, “Analysis of energy flows in an intertidal oyster reef”, Mar. Ecol. Progr. Ser., 5 (1981), 363–380 | DOI

[5] B. C. Patten, M. Higashi, “Modified cycling index for ecological applications”, Ecol. Model., 25 (1984), 69–83 | DOI

[6] R. W. Bosserman, “Sensitivity of cycling measures derived from ecological flow analysis”, Ecol. Model., 48 (1989), 45–64 | DOI

[7] R. Herendeen, “Energy intensity, residence time, exergy, and ascendency in dynamic ecosystems”, Ecol. Model., 48 (1989), 19–44 | DOI

[8] H. Nakajima, “Sensitivity and stability of flow networks”, Ecol. Model., 62 (1992), 123–133 | DOI

[9] M. Higashi, T. P. Burns, B. C. Patten, “Network trophic dynamics: the tempo of energy movement and availability in ecosystems”, Ecol. Model., 66 (1993), 43–64 | DOI

[10] M. Higashi, B. C. Patten, T. P. Burns, “Network trophic dynamics: the modes of energy utilization in ecosystems”, Ecol. Model., 66 (1993), 1–42 | DOI

[11] B. P. Han, “Residence time of matter and energy in econetworks at steady state”, Ecol. Model., 95 (1997), 301–310 | DOI

[12] B. P. Han, “On several measures concerning flow variables in ecosystem”, Ecol. Model., 104 (1997), 289–302 | DOI

[13] O. B. Feldman, “Potokovye modeli agroekosistem”, Matem. modelirovanie, 11:10 (1999), 31–48

[14] Z. X. Qiu, Plant Ecology, Advance Education Press, Beijing, 1982, 320–324

[15] O.-Y. Kwon, J. L. Schnoor, “Simple carbon models: the atmosphere-terrestrial biosphere-ocean interaction”, Global Biogeochem, Cycles, 8 (1994), 295–305 | DOI

[16] D. O. Logofet, “Svicobians of the compartment models and DaD – stability of the Svicobians: aggregating “0-dimensional” models of global biogeochemical cycles”, Ecol. Model., 104 (1997), 39–49 | DOI