The analysis of competition models in constant and periodically changing environment
Matematičeskoe modelirovanie, Tome 14 (2002) no. 3, pp. 71-83.

Voir la notice de l'article provenant de la source Math-Net.Ru

A principle is given for global Poincare map to inherit a number of local properties in competition models. Based on geometrical and analytical approach the Selection criterions are formulated and proved for constant and periodically changing environment.
@article{MM_2002_14_3_a6,
     author = {V. G. Il'ichev and O. A. Il'icheva},
     title = {The analysis of competition models in constant and periodically changing environment},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {71--83},
     publisher = {mathdoc},
     volume = {14},
     number = {3},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2002_14_3_a6/}
}
TY  - JOUR
AU  - V. G. Il'ichev
AU  - O. A. Il'icheva
TI  - The analysis of competition models in constant and periodically changing environment
JO  - Matematičeskoe modelirovanie
PY  - 2002
SP  - 71
EP  - 83
VL  - 14
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2002_14_3_a6/
LA  - ru
ID  - MM_2002_14_3_a6
ER  - 
%0 Journal Article
%A V. G. Il'ichev
%A O. A. Il'icheva
%T The analysis of competition models in constant and periodically changing environment
%J Matematičeskoe modelirovanie
%D 2002
%P 71-83
%V 14
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2002_14_3_a6/
%G ru
%F MM_2002_14_3_a6
V. G. Il'ichev; O. A. Il'icheva. The analysis of competition models in constant and periodically changing environment. Matematičeskoe modelirovanie, Tome 14 (2002) no. 3, pp. 71-83. http://geodesic.mathdoc.fr/item/MM_2002_14_3_a6/

[1] M. A. Armstrong, R. O. McGehee, “Coexistence of species competing for shared resources”, Theor. Pop. Biol., 9:3 (1976), 317–328 | DOI | MR | Zbl

[2] J. M. Cushing, “Two species competition in a Periodic Enviroment”, J. Math. Biology, 1980, no. 10, 385–400 | DOI | MR | Zbl

[3] M. Gatto, M. Annaratone, M. Borghesi, “The competitive coexistence of two species in periodically varying enviroments”, Bull. Zooll., 46 (1979), 191–200

[4] S. Rosenblat, “Population Models in a Periodical Fluctuating Environment”, J. Math. Biology, 9 (1980), 23–36 | DOI | MR | Zbl

[5] V. G. Ilichev, O. A. Ilicheva, “Universalnye konstanty zapasa v kriterii otbora v periodicheski izmenyayuscheisya srede”, Zhurnal Obschei Biologii, 61:6 (2000), 565–582

[6] R. R. Vance, E. A. Coddington, “A nonautonomus model of population growth”, J. Math. Biology, 27:5 (1980), 491–506 | DOI | MR

[7] V. I. Arnold, Obyknovennye differentsialnye uravneniya, Nauka, M., 1984 | MR

[8] V. G. Ilichev, O..A. Ilicheva, “Znak-invariantnye struktury matrits i diskretnye modeli”, Diskretnaya matematika, 11:4 (1999), 89–100 | MR | Zbl

[9] V. I. Opoitsev, Nelineinaya sistemostatika, Nauka, M., 1986 | MR

[10] H. L. Smith, P. Waltman, “Competition in the periodic gradostat”, Nonlinear Analysis: Real World Applications, 1 (2000), 177–188 | DOI | MR | Zbl

[11] M. A. Krasnoselskii, P. P. Zabreiko, Geometricheskie metody nelineinogo analiza, Nauka, M., 1975 | MR

[12] V. G. Ilichev, “Delta-funktsii i teoriya biologicheskoi konkurentsii v peremennoi srede”, Avtomatika i Telemekhanika, 1996, no. 11, 115–127 | MR

[13] V. G. Ilichev, “Delta-funktsii i issledovanie ekologicheskikh modelei Volterra v peremennoi srede”, Izv. Vuzov. Matem., 1998, no. 4, 23–33 | MR