Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2002_14_3_a4, author = {D. N. Bokov}, title = {Characteristic directions technique of solving scalar one-dimensional nonlinear advection equation with noncovex flow function}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {43--58}, publisher = {mathdoc}, volume = {14}, number = {3}, year = {2002}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2002_14_3_a4/} }
TY - JOUR AU - D. N. Bokov TI - Characteristic directions technique of solving scalar one-dimensional nonlinear advection equation with noncovex flow function JO - Matematičeskoe modelirovanie PY - 2002 SP - 43 EP - 58 VL - 14 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2002_14_3_a4/ LA - ru ID - MM_2002_14_3_a4 ER -
%0 Journal Article %A D. N. Bokov %T Characteristic directions technique of solving scalar one-dimensional nonlinear advection equation with noncovex flow function %J Matematičeskoe modelirovanie %D 2002 %P 43-58 %V 14 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2002_14_3_a4/ %G ru %F MM_2002_14_3_a4
D. N. Bokov. Characteristic directions technique of solving scalar one-dimensional nonlinear advection equation with noncovex flow function. Matematičeskoe modelirovanie, Tome 14 (2002) no. 3, pp. 43-58. http://geodesic.mathdoc.fr/item/MM_2002_14_3_a4/
[1] Petrovskii I. G., Lektsii ob uravneniyakh s chastnymi proizvodnymi, GITTL, M., 1950
[2] Oleinik O. A., “O zadache Koshi dlya nelineinykh uravnenii v klasse razryvnykh funktsii”, DAN, XCV:3 (1954), 451–454 | MR
[3] Godunov S. K., Vospominaniya o raznostnykh skhemakh, Nauchnaya kniga, Novosibirsk, 1997
[4] Gelfand I. M., “Nekotorye zadachi teorii kvazilineinykh uravnenii”, UMN, 14:2(86) (1959), 87–158 | MR
[5] Rozhdestvenskii B. L., Yanenko N. N., Sistemy kvazilineinykh uravnenii i ikh prilozheniya k gazovoi dinamike, Nauka, M., 1978 | MR | Zbl
[6] Oleinik O. A., “O edinstvennosti i ustoichivosti obobschennogo resheniya zadachi Koshi dlya kvazilineinogo uravneniya”, UMN, 14:2(86) (1959), 165–170 | MR
[7] Lindquist W. B., “The scalar Riemann problem in two spatial dimensions: piecewise smoothness of solutions and its breakdown”, Siam J. Math. Anal., 17:5 (1986), 1178–1197 | DOI | MR | Zbl
[8] Rozhdestvenskii B. L., “Razryvnye resheniya sistem kvazilineinykh uravnenii giperbolicheskogo tipa”, UMN, 15:6(96) (1960), 59–117 | MR | Zbl
[9] Samarskii A. A., “Raznostnaya approksimatsiya konvektivnogo perenosa s prostranstvennym rasschepleniem vremennoi proizvodnoi”, Matem. modelirovanie, 10:1 (1998), 86–100 | MR
[10] Kurganov A., Tadmor E., “New high-resolution central schemes for nonlinear conservation laws and convection-diffusion equations”, J. Comput. Phys., 160 (2000), 241–282 | DOI | MR | Zbl
[11] Shu C.-W., Osher S., “Efficient implementation of essentially non-oscillatory shock-capturing schemes”, J. Comput. Phys., 77:2 (1988), 439–471 | DOI | MR | Zbl
[12] Harten A., Engquist B., Osher S., Chakravarthy S. R., “Uniformly high order accurate essentially nonoscillatory schemes, III”, J. Comput. Phys., 71:2 (1987), 231–303 | DOI | MR | Zbl