Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2002_14_2_a5, author = {V. G. Korneev and J. E. Flaherty and T. Oden and J. Fish}, title = {$hp$-version additive {Schwarz} algorithms on triangular meshes}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {61--94}, publisher = {mathdoc}, volume = {14}, number = {2}, year = {2002}, language = {en}, url = {http://geodesic.mathdoc.fr/item/MM_2002_14_2_a5/} }
TY - JOUR AU - V. G. Korneev AU - J. E. Flaherty AU - T. Oden AU - J. Fish TI - $hp$-version additive Schwarz algorithms on triangular meshes JO - Matematičeskoe modelirovanie PY - 2002 SP - 61 EP - 94 VL - 14 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2002_14_2_a5/ LA - en ID - MM_2002_14_2_a5 ER -
V. G. Korneev; J. E. Flaherty; T. Oden; J. Fish. $hp$-version additive Schwarz algorithms on triangular meshes. Matematičeskoe modelirovanie, Tome 14 (2002) no. 2, pp. 61-94. http://geodesic.mathdoc.fr/item/MM_2002_14_2_a5/
[1] I. Babuška, M. Suri, “The $h-p$-version of the finite, element method with quasiuniform meshes”, Model. Math. et Anal. Numer., 21 (1987), 199–238 | MR | Zbl
[2] B. A. Szabo, I. Babuška, Finite Element Analysis, Wiley Interscience, New York, 1987
[3] L. Demkowicz, J. T. Oden, W. Rackowicz, O. Hardy, “Toward a universal $hp$ adaptive finite element strategy. Part 1. Constrained Approximation and data structure”, Comput. Methods Appl. Mech. Engrg., 77 (1989), 79–112 | DOI | MR | Zbl
[4] W. Rackowicz, J. T. Oden, L. Demkowicz, “Toward a universal $hp$ adaptive finite element strategy. Part 3. Design of $hp$ meshes”, Comput. Methods Appl. Mech. Engrg., 77 (1989), 181–212 | DOI | MR
[5] Ch. Schwab, $p$- and $ph$-Finite element Methods Theory and Applicatons in Solid and Fluid Mechanics, Clarendon Press, Oxford, 1998 | MR | Zbl
[6] J. Bramble, J. Pasciak, A. Schatz, “The construction of preconditioners for elliptic problems by substructuring, I”, Math. Comp., 47 (1986), 103–134 | DOI | MR | Zbl
[7] J. Bramble, J. Pasciak, A. Schatz, “The construction of preconditioners for elliptic problems by substructuring, IV”, Math. Comp., 53 (1989), 1–24 | DOI | MR | Zbl
[8] A. M. Matsokin, S. V. Nepomnyaschikh, “Alterniruyuschii metod Shvartsa v podprostranstve”, Izv. vuzov. Matem., 1985, no. 10, 61–66 | MR | Zbl
[9] S. V. Nepomnyaschikh, “Method of splitting into subspaces for solving elliptic boundary value problems in complex-form domains. Russian (cont. Sov.)”, J. Numer. Anal. Math. Model., 6 (1991), 151–168 | DOI | MR | Zbl
[10] O. B. Widlund, “Iterative substructuring methods: Algorithms and theory for elliptic problems in plane”, First International Symposium on Domain Decomposition Methods for Partial Differential Equations, eds. R. Glowinski et al., Philadelphia, PA, 1988, 113–128 | MR | Zbl
[11] P. L. Lions, On the Schwarz alternating methods. I. Domain Decomposition Methods for Partial Differential Equations, eds. R. Glowinski et al., SIAM, Philadelphia, 1988 | MR | Zbl
[12] I. Babuška, A. Craig, J. Mandel, J. Pitkäranta, “Efficient preconditioning for the inversion finite element method in two dimensions”, SIAM J. Numer. Anal., 28:3 (1991), 624–661 | DOI | MR | Zbl
[13] J. T. Oden, A. Patra, Y. S. Feng, “Domain decomposition solver for adaptive $hp$ finite elements”, Vllth International Conference on Domain Decomposition, State College, Pennsylvania, 1993
[14] S. A. Ivanov, V. G. Korneev, On the preconditioning in the domain decomposition technique for the $p$-version finite element method. Part I. Technische Universitat Chemnitz-Zwickau, Preprint SPC 95-35, 1995 | MR
[15] S.A.Ivanov, V. G. Korneev, On the preconditioning in the domain decomposition technique for the $p$-version finite element method. Part II. Technische Universitat Chemnitz-Zwickau, Preprint SPC 95-36, 1995 | MR
[16] S. A. Ivanov, V. G. Korneev, “Preconditioning in the domain decomposition methods for the $p$-version with the hierarchical bases”, Trudy mezhdunar. konf. OFEA-95 (Peterburg, Iyun 25–29, 1995) ; Матем. моделирование, 8:9 (1996), 63–73 | MR | Zbl
[17] V. G. Korneev, S. Jensen, “Preconditioning of the $p$-version of the finite element method”, Comput. Methods Appl. Mech. Engrg., 150 (1977), 215–238 | DOI | MR
[18] V. G. Korneev, S. Ensen, “Effektivnoe predobuslovlivanie metodom dekompozitsii oblasti dlya $p$-versii s ierarkhicheskim bazisom, I”, Izv. vuzov. Matem., 1999, no. 5, 37–56 | MR | Zbl
[19] V. G. Korneev, S. Ensen, “Effektivnoe predobuslovlivanie metodom dekompozitsii oblasti dlya $p$-versii s ierarkhicheskim bazisom, II”, Izv. vuzov. Matem., 1999, no. 11, 24–40 | MR | Zbl
[20] V. G. Korneev, S. Jensen, “Domain decomposition preconditioning in the hierarchical pversion of the finite element method”, Appl. Numerical Math., 29 (1999), 479–518 | DOI | MR | Zbl
[21] M. Ainsworth, “A preconditioner based on domain decomposition for $h-p$ finite element approximation on quasi-uniform meshes”, SIAM J. Numer. Anal., 33 (1996), 1358–1376 | DOI | MR | Zbl
[22] M. Ainsworih, B. Senior, “Aspects of an adaptive $ph$-finite element method: Adaptive strategy, conforming approximation and efficient solvers”, Methods Appl. Mech. Engrg., 150 (1977), 65–87 | DOI
[23] B. Guo, W. Cao, “Inexact solvers on element surfaces for the $p$ and $h-p$ finite element method”, Comput. Methods Appl. Mech. Engrg., 150 (1997), 173–191 | DOI | MR
[24] S. A. Ivanov, V. G. Korneev, “Vybor koordinatnykh koordinatnykh funktsii vysokogo poryadka i predobuslovlivanie v ramkakh metoda dekompozitsii oblasti”, Izv. vuzov. Matem., 1995, no. 4, 62–81 | MR | Zbl
[25] J. T. O den, A. Patra, Y. S. Feng, “Parallel Domain decomposition solver for adaptive $hp$ finite element methods”, SIAM J. Num. Anal., 34 (1997), 2090–2118 | DOI | MR
[26] L. F. Pavarino, “Additive Schwartz methods for the $p$-version finite element method”, Numer. Math., 66 (1994), 493–515 | DOI | MR | Zbl
[27] O. B. Widlund, “Preconditioners for Spectral and Mortar Finite Element Methods”, Proceedings of the Eighth International Conference on Domain Decomposition Methods (Beijing, PRC, May 15–19, 1995), Wiley-Interscience, Strasbourg, France, 1996 | MR
[28] M. A. Casarin, “Quasi-optimal Schwarz methods for the conforming spectral element discretization”, SIAM J. Num. Anal., 34 (1997), 2482–2502 | DOI | MR | Zbl
[29] M. S. Shephard, S. Dey, J. E. Flaherty, “A straight-forward structure to construct shape functions for variable $p$-order meshes”, Comput. Methods Appl. Mech. Engrg., 147 (1997), 209–234 | DOI | MR
[30] R. A. Adams, Sobolev Spaces, Academic Press, New York, 1975 | MR | Zbl
[31] V. G. Korneev, Skhemy metoda konechnykh elementov vysokikh poryadkov tochnosti, Izd. Leningr. un-ta, L., 1977 | MR
[32] V. G. Korneev, “Iteratsionnye metody resheniya sistem uravnenii metoda konechnykh elementov”, Zhurnal vychisl. matem. i matem. fiz., 17:5 (1997), 109–129 | MR
[33] V. G. Korneev, “O postroenii variatsionno-raznostnykh skhem vysokikh poryadkov tochnosti”, Vestn. Leningr. un-ta, 1970, no. 19, 28–40 | MR | Zbl
[34] P. Carnevali, R. B. Morris, Y. Tsuji, G. Taylor, “New basis functions and computational procedures for $p$-version finite element analysis”, Int. J. Numer. Meth. Engrg., 36 (1993), 3759–3779 | DOI | Zbl
[35] C. Bernardi, M. Dauge, Y. Maday, “Relévements de traces presérvant les polinomes”, C. R. Acad. Sci. Paris Sér. I Math., 315 (1992), 333–338 | MR | Zbl
[36] C. Bernardi, M. Dauge, Y. Maday, Polynomials in weighted Sobolev spaces: Basics and trace liftings, Publications du Laboratoire d'Analyse Numerique, R92039 Universite Pierre et Marie Curie, Paris, 1993
[37] C. Bernardi, Y. Maday, “Relévements polinomial de traces et application”, RAIRO Modél. Math. Anal. Numér, 24 (1990), 557–611 | MR | Zbl
[38] R. Munos-Sola, “Polynomial liftings on a tetrahedron and applications to the $h-p$ version of the finite element method in three dimensions”, SIAM J. Numer. Anal., 34 (1997), 282–314 | DOI | MR
[39] S. V. Nepomnyaschikh, Metod razdeleniya oblasti dlya ellipticheskikh zadach s razryvnymi koeffitsientami, Preprint No 891. Vychisl. Tsentr SO AN SSSR, Novosibirsk, 1990 | MR
[40] O. Axellson, Iterative Solution Methods, Cambridge University Press, New York, 1994 | MR
[41] A. A. Samarskii, E. S. Nikolaev, Metody resheniya setochnykh uravnenii, Nauka, M., 1978 | MR | Zbl
[42] I. S. Gradshtein, I. M. Ryzhik, Tablitsy integralov, summ, ryadov i proizvedenii, 4-oe izd., Fizmatgiz, M., 1962
[43] J. Bramble, Multigrid methods, Pitman Research Notes in Mathematical Sciences, 294, Longman Sci. Tech., Harlow, Essex, 1993 | MR | Zbl
[44] W. Hackbusch, Multi-grid Methods and Applications, Springer-Verlag, Berlin, 1985 | Zbl
[45] M. Dryja, “A finite element capacitance method for elliptic problems on regions partitioned into substructures”, Numer. Math., 44 (1984), 153–168 | DOI | MR | Zbl