Orthogonal finite functions in variational-grid methods of the theory of curvilinear bars
Matematičeskoe modelirovanie, Tome 14 (2002) no. 2, pp. 39-50.

Voir la notice de l'article provenant de la source Math-Net.Ru

Several variational-grid methods of the theory of curvilinear bars are constructed and tested based on application of a mixed variational Reissner's principle and various basic systems orthogonal and unorthogonal finite functions. The comparison of the approached decisions of a task of the deformed state of curvilinear bar received by these methods on several grids, with the known exact decisions, and also with each other, shows their fast uniform convergence and satisfactory accuracy both on diplacements and on stresses. The advantages of algorithms and computing properties of methods using orthogonal finite functions are marked in comparison with other methods based on mixed variational principles, and in comparison with methods connected to a variational Lagrange principle.
@article{MM_2002_14_2_a3,
     author = {V. L. Leont'ev and A. Yu. Melent'ev},
     title = {Orthogonal finite functions in variational-grid methods of the theory of curvilinear bars},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {39--50},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2002_14_2_a3/}
}
TY  - JOUR
AU  - V. L. Leont'ev
AU  - A. Yu. Melent'ev
TI  - Orthogonal finite functions in variational-grid methods of the theory of curvilinear bars
JO  - Matematičeskoe modelirovanie
PY  - 2002
SP  - 39
EP  - 50
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2002_14_2_a3/
LA  - ru
ID  - MM_2002_14_2_a3
ER  - 
%0 Journal Article
%A V. L. Leont'ev
%A A. Yu. Melent'ev
%T Orthogonal finite functions in variational-grid methods of the theory of curvilinear bars
%J Matematičeskoe modelirovanie
%D 2002
%P 39-50
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2002_14_2_a3/
%G ru
%F MM_2002_14_2_a3
V. L. Leont'ev; A. Yu. Melent'ev. Orthogonal finite functions in variational-grid methods of the theory of curvilinear bars. Matematičeskoe modelirovanie, Tome 14 (2002) no. 2, pp. 39-50. http://geodesic.mathdoc.fr/item/MM_2002_14_2_a3/

[1] Daubechies I., “Orthonormal bases of compactly supported wavelets”, Comm. on Pure and Applied Math., XLI (1988), 909–996 | DOI | MR

[2] Streng G.,Fiks Dzh., Teoriya metoda konechnykh elementov, Mir, M., 1977 | MR

[3] Leontev V. L., “Ob odnom obobschenii funktsii Kuranta. “Teoriya funktsii i priblizhenii””, Trudy 7-i Saratovskoi zimnei shkoly, Ch. 3 (30 yanvarya–4 fevralya 1994 goda, pamyati prof. A. A. Privalova), Izd-vo Sarat. un-ta, 1995, 36–40 | MR

[4] Leontjew V. L., Ziplow M. P., “Uber eine projektionen netzlichen Methode, die mit der Anwendung der miteinander orthogonalen ununterbrochen en Basisfunktionen mit dem endlichen Trager verknupfen ist”, Des. 1 Russisch-Deutschen Symposiums “Intelligence informationstechnologien in der entscheidungsfindung” (24–28 November 1995, Moskau), 169–173

[5] Leontev V. L., Lukashanets N. Ch., “O setochnykh bazisakh ortogonalnykh finitnykh funktsii”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 39:7 (1999), 1158–1168 | MR

[6] Airapetov E. L., Vibratsii v tekhnike, T. 3, Mashinostroenie, M., 1980