Numerical simulation of unstable processes in phase decomposition problem
Matematičeskoe modelirovanie, Tome 14 (2002) no. 2, pp. 27-38

Voir la notice de l'article provenant de la source Math-Net.Ru

We carry out numerical simulation of phase decomposition processes in binary alloys for a conservative phase field system. For the case $x\in\mathbb R^1$ explicit and implicit difference schemes are proposed. Numerical results illustrate the main stages of the process dynamics: the interface motion, the evolution and bifurcation of a “soliton”, and the motion and bifurcation of an oscillating singularity.
@article{MM_2002_14_2_a2,
     author = {D. A. Kulagin and G. A. Omel'yanov and N. O. Ordinartseva},
     title = {Numerical simulation of unstable processes in phase decomposition problem},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {27--38},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2002_14_2_a2/}
}
TY  - JOUR
AU  - D. A. Kulagin
AU  - G. A. Omel'yanov
AU  - N. O. Ordinartseva
TI  - Numerical simulation of unstable processes in phase decomposition problem
JO  - Matematičeskoe modelirovanie
PY  - 2002
SP  - 27
EP  - 38
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2002_14_2_a2/
LA  - ru
ID  - MM_2002_14_2_a2
ER  - 
%0 Journal Article
%A D. A. Kulagin
%A G. A. Omel'yanov
%A N. O. Ordinartseva
%T Numerical simulation of unstable processes in phase decomposition problem
%J Matematičeskoe modelirovanie
%D 2002
%P 27-38
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2002_14_2_a2/
%G ru
%F MM_2002_14_2_a2
D. A. Kulagin; G. A. Omel'yanov; N. O. Ordinartseva. Numerical simulation of unstable processes in phase decomposition problem. Matematičeskoe modelirovanie, Tome 14 (2002) no. 2, pp. 27-38. http://geodesic.mathdoc.fr/item/MM_2002_14_2_a2/