@article{MM_2002_14_2_a2,
author = {D. A. Kulagin and G. A. Omel'yanov and N. O. Ordinartseva},
title = {Numerical simulation of unstable processes in phase decomposition problem},
journal = {Matemati\v{c}eskoe modelirovanie},
pages = {27--38},
year = {2002},
volume = {14},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MM_2002_14_2_a2/}
}
TY - JOUR AU - D. A. Kulagin AU - G. A. Omel'yanov AU - N. O. Ordinartseva TI - Numerical simulation of unstable processes in phase decomposition problem JO - Matematičeskoe modelirovanie PY - 2002 SP - 27 EP - 38 VL - 14 IS - 2 UR - http://geodesic.mathdoc.fr/item/MM_2002_14_2_a2/ LA - ru ID - MM_2002_14_2_a2 ER -
D. A. Kulagin; G. A. Omel'yanov; N. O. Ordinartseva. Numerical simulation of unstable processes in phase decomposition problem. Matematičeskoe modelirovanie, Tome 14 (2002) no. 2, pp. 27-38. http://geodesic.mathdoc.fr/item/MM_2002_14_2_a2/
[1] G. Caginalp, “A conserved phase field system: implication for kinetic undercooling”, Phis. Rev. B, 38 (1988), 789–891 | DOI
[2] G. Caginalp, “The dynamics of a conserved phase field system: Stefan like, Hele–Shaw and Cahn–Hilliard models asymptotic limits”, IMA J. Appl. Math., 44 (1990), 77–94 | DOI | MR | Zbl
[3] A. Novick-Cohen, “The nonlinear Cahn–Hilliard equation: transition from spinodal decomposition to nuclear behavior”, J. Stat. Phys., 38:3–4 (1985), 707–722 | DOI
[4] V. G. Danilov, G. A. OmeVanov, E. V. Radkevich, “Soliton-type asymptotic solution of the conserved phase field system”, Portugaliae Mathematica, 53:4 (1996), 471–501 | MR | Zbl
[5] V. G. Danilov, G. A. Ome'anov, E. V. Radkevich, “Tahn-type asymptotic solution of the conserved phase field system”, Adv. in. Math. Sc. Appl., 8:21 (1998) | MR | Zbl
[6] V. G. Danilov, G. A. Ome'anov, “Propagation of singularities and related problems of solidification”, Matematichki Vesnik, 49:3–4 (1997), 143–150 | MR | Zbl
[7] A. A. Samarskii, Teoriya raznostnykh skhem, Nauka, M., 1977 | MR | Zbl
[8] P. Rouch, Vychislitelnaya gidrodinamika, Mir, M., 1980 | Zbl
[9] S. Z. Burstein, E. L. Rubin, “Difference methods for the inviscid and viscous equations of a compressible gas”, J. of Comput. Phys., 2 (1967), 178–196 | DOI
[10] E. C. Nikolaev, A. A. Samarskii, Metody resheniya setochnykh uravnenii, Nauka, M., 1978 | MR