Method of minimum length for finding of critical parameters of mixed flows
Matematičeskoe modelirovanie, Tome 14 (2002) no. 1, pp. 87-96.

Voir la notice de l'article provenant de la source Math-Net.Ru

Fast iteration algorithm for finding the critical values of governing parameters is developed to solve steady problems of internal and external mixed (with subsonic and supersonic regions) flows at moderate and large Reynolds numbers. Algorithm is based on analysis of a branching of numerical integral curves of difference equations in the transonic flow region and on the use of a principle of a minimum of length of the integral curve, which corresponds to “critical” value of the governing parameter. The method of minimum length is illustrated on examples of viscous flows through a Laval nozzle and in a shock layer near a blunt body (a sphere) in a supersonic flow. The critical value of the mass flow rate through the nozzle and a value of curvature of a shock wave on a symmetry axis of the flow are determined by the given method in the first and second examples, respectively.
@article{MM_2002_14_1_a5,
     author = {B. V. Rogov},
     title = {Method of minimum length for finding of critical parameters of mixed flows},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {87--96},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2002_14_1_a5/}
}
TY  - JOUR
AU  - B. V. Rogov
TI  - Method of minimum length for finding of critical parameters of mixed flows
JO  - Matematičeskoe modelirovanie
PY  - 2002
SP  - 87
EP  - 96
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2002_14_1_a5/
LA  - ru
ID  - MM_2002_14_1_a5
ER  - 
%0 Journal Article
%A B. V. Rogov
%T Method of minimum length for finding of critical parameters of mixed flows
%J Matematičeskoe modelirovanie
%D 2002
%P 87-96
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2002_14_1_a5/
%G ru
%F MM_2002_14_1_a5
B. V. Rogov. Method of minimum length for finding of critical parameters of mixed flows. Matematičeskoe modelirovanie, Tome 14 (2002) no. 1, pp. 87-96. http://geodesic.mathdoc.fr/item/MM_2002_14_1_a5/

[1] L. G. Loitsyanskii, Mekhanika zhidkosti i gaza, Nauka, M., 1978 | MR

[2] U. G. Pirumov, G. S. Roslyakov, Techeniya gaza v soplakh, Izd-vo Mosk. un-ta, M., 1978

[3] U. G. Pirumov, G. S. Roslyakov, Gazovaya dinamika sopel, Nauka, M., 1990

[4] L. N. Lyubimov, V. V. Rusanov, Techeniya gaza okolo zatuplennykh tel, T. 2, Nauka, M., 1970

[5] A. N. Lyubimov, N. M. Tyumnev, G. I. Khut, Metody issledovaniya techenii gaza i opredeleniya aerodinamicheskikh kharakteristik osesimmetrichnykh tel, Nauka, M., 1995

[6] Yu. P. Tolovachev, Chislennoe modelirovanie techenii vyazkogo gaza v udarnom sloe, Nauka, M., 1996

[7] Yu. V. Lapin, M. Kh. Strelets, Vnutrennie techeniya gazovykh smesei, Nauka, M., 1989

[8] M. Ya. Ivanov, L. N. Kraiko, “Chislennoe reshenie pryamoi zadachi o smeshannom techenii v soplakh”, Izv. AN SSSR. Mekh. zhidk. i gaza, 1969, no. 5, 77–83

[9] O. M. Belotserkovskii, A. P. Byrkin, A. P. Mazurov, A. I. Tolstykh, “Raznostnyi metod povyshennoi tochnosti dlya rascheta techenii vyazkogo gaza”, ZhVM i MF, 22:6 (1982), 1480–1490 | MR

[10] Yu. E. Egorov, M. Kh. Strelets, M. L. Shur, “Primenenie metoda masshtabirovaniya szhimaemosti dlya rascheta statsionarnykh techenii vyazkikh gazov i gazovykh smesei v soplakh Lavalya”, Matem. modelirovanie, 2:10 (1990), 3–12 | Zbl

[11] G. A. Tirskii, S. V. Utyuzhnikov, “Sovremennye gazodinamicheskie modeli vneshnikh i vnutrennikh zadach sverkh- i giperzvukovoi aerodinamiki”, Modelirovanie v mekhanike, 7:2 (1993), 5–28 | MR

[12] D. A. Anderson, J. C. Tannehill, R. H. Pletcher, Computational Fluid Mechanics and Heat Transfer, Hemisphere, Washington, New York, London, 1984 | MR | Zbl

[13] S. G. Rubin, J. C. Tannehill, “Parabolized/reduced Navier–Stokes computational techniquies”, Annual Review of Fluid Mechanics, 24 (1992), 117–144 | MR | Zbl

[14] C. A. J. Fletcher, Computational Techniques for Fluid Dynamics, Springer-Verlag, Berlin, 1988

[15] V. A. Volkov, V. Yu. Gidaspov, A. N. Kozelko, U. G. Pirumov, “Marshevyi polisetochnyi algoritm rascheta sverkhzvukovykh statsionarnykh techenii gaza na estestvenno adaptirovannykh setkakh”, Matem. modelirovanie, 8:6 (1996), 121–127 | MR | Zbl

[16] Yu. E. Egorov, M. Kh. Strelets, M. L. Shur, Granitsy primenimosti parabolicheskikh modelei dlya chislennogo issledovaniya techenii v soplakh Lavalya. 1. Priblizhenie uzkogo kanala, Preprint Gos. in-ta prikladnoi khimii, No 4, L., 1991

[17] B. V. Rogov, I. A. Sokolova, “Uravneniya vyazkikh techenii v gladkikh kanalakh peremennogo secheniya”, DAN, 345:5 (1995), 615–618 | Zbl

[18] B. V. Rogov, I. A. Sokolova, “Ob asimptoticheskoi tochnosti priblizheniya gladkogo kanala pri opisanii vyazkikh techenii”, DAN, 357:2 (1997), 190–194 | MR

[19] H. A. Rogov, I. A. Sokolova, “Efficient Simplified Model For Internal Viscous Flow”, AIAA, 1998, 98–2493

[20] N. N. Kalitkin, B. V. Rogov, I. A. Sokolova, “Dvukhstadiinyi marshevyi metod rascheta vyazkikh techenii cherez soplo Lavalya”, Matem. modelirovanie, 11:7 (1999), 95–117

[21] N. N. Kalitkin, B. V. Rogov, I. A. Sokolova, “Reshenie pryamoi zadachi sopla iteratsiyami po napravleniyam linii toka”, DAN, 370:1 (2000), 46–49

[22] N. N. Kalitkin, B. V. Rogov, I. A. Sokolova, “Effektivnyi metod rascheta vyazkikh techenii so znachitelnym iskrivleniem linii toka”, DAN, 374:2 (2000), 190–193

[23] B. V. Rogov, I. A. Sokolova, “Uproschennye uravneniya Nave–Stoksa dlya vnutrennikh smeshannykh techenii i chislennyi metod ikh resheniya”, Izv. RAN. Mekh. zhidk. i gaza, 2001, no. 3, 61–70 | MR | Zbl

[24] W. J. Rae, “Some numerical results on viscous low-density nozzle flows in the slender-channel approximation”, AIAA Journal, 9:5 (1971), 811–820 | DOI

[25] U. G. Pirumov, Chislennye metody, Izd-vo MAI, M., 1998

[26] B. V. Rogov, B. V. Sokolova, “Giperbolicheskaya model vyazkikh smeshannykh techenii”, DAN, 378:5 (2001), 628–632 | MR

[27] M. Van-Daik, “Teoriya szhimaemogo pogranichnogo sloya vo vtorom priblizhenii s primeneniem k obtekaniyu zatuplennykh tel giperzvukovym potokom”, Issledovanie giperzvukovykh techenii, Mir, M., 1964, 35–58

[28] R. T. Davis, M. J. Werle, S. F. Wornom, “A consistent formulation of compressible boundary-layer theory with second-order curvature and displacement effects”, AIAA Journal, 8:9 (1970), 1701–1703 | DOI | Zbl

[29] Davis R. T., “Numerical solution of the hypersonic viscous shock-layer equations”, AIAA Journal, 8:5 (1970), 843–851 | DOI | Zbl

[30] B. V. Rogov, I. A. Sokolova, “Marshevyi raschet udarnoi volny pri nevyazkom sverkhzvukovom obtekanii zatuplennykh tel”, Matem. modelirovanie, 13:5 (2001), 110–118 | MR | Zbl

[31] N. N. Kalitkin, Chislennye metody, Nauka, M., 1978 | MR