Development of the nonlinear moment method for solving the Boltzmann equation in axially symmetric case
Matematičeskoe modelirovanie, Tome 14 (2002) no. 12, pp. 98-104.

Voir la notice de l'article provenant de la source Math-Net.Ru

A new computation algorithm is advanced being an essential part of the moment method to solve the Boltzmann equation. The treatment is based on an invariance principle of the collision integral concerning a choice of the basic system of functions over which the distribution function expansion is accomplished. The relations between the matrix elements of an interaction matrix are systematically studied in details. The recurrent relationships between the matrix elements are deduced for the axially symmetric case.
@article{MM_2002_14_12_a8,
     author = {A. I. Ender and I. A. Ender and M. B. Lutenko},
     title = {Development of the nonlinear moment method for solving the {Boltzmann} equation in axially symmetric case},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {98--104},
     publisher = {mathdoc},
     volume = {14},
     number = {12},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2002_14_12_a8/}
}
TY  - JOUR
AU  - A. I. Ender
AU  - I. A. Ender
AU  - M. B. Lutenko
TI  - Development of the nonlinear moment method for solving the Boltzmann equation in axially symmetric case
JO  - Matematičeskoe modelirovanie
PY  - 2002
SP  - 98
EP  - 104
VL  - 14
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2002_14_12_a8/
LA  - ru
ID  - MM_2002_14_12_a8
ER  - 
%0 Journal Article
%A A. I. Ender
%A I. A. Ender
%A M. B. Lutenko
%T Development of the nonlinear moment method for solving the Boltzmann equation in axially symmetric case
%J Matematičeskoe modelirovanie
%D 2002
%P 98-104
%V 14
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2002_14_12_a8/
%G ru
%F MM_2002_14_12_a8
A. I. Ender; I. A. Ender; M. B. Lutenko. Development of the nonlinear moment method for solving the Boltzmann equation in axially symmetric case. Matematičeskoe modelirovanie, Tome 14 (2002) no. 12, pp. 98-104. http://geodesic.mathdoc.fr/item/MM_2002_14_12_a8/

[1] Fertsiger Dzh., Kaper G., Matematicheskaya teoriya protsessov perenosa v gazakh, Izd-vo Mir, 1976

[2] Burnett D., “The distribution of molecular velocities and the mean motion in a non-uniform gas”, Proc. London Math. Soc., 40 (1935), 382–435 | DOI

[3] Sirovich L., “Dispersion relation in rarefied gas dynamics”, Phys. Fluids, 6:10 (1963) | DOI | MR

[4] Ender A. Ya., Ender I. A., “Momentnyi metod dlya izotropnogo uravneniya Boltsmana”, ZhETF, 64:10 (1994), 38–53

[5] Ender A. Ya., Ender I. A., “Polynomial expansion for the isotropic Boltzmann equation and invariance of the collision integral with respect to the choice of basis functions”, Phys. Fluids, 11 (1999), 2720–2730 | DOI | MR | Zbl

[6] Ender I. A., Ender A. Ya., “Ob odnom predstavlenii uravneniya Boltsmana”, Dokl. AN SSSR, 193:1 (1970), 61–64

[7] Hecke E., “Uber ortogonalinvariante Integralgleichungen”, Math. Ann., 78 (1917), 398 | DOI | MR | Zbl

[8] Hecke E., “Uber die Integralgleichungen der kinetishen Gastheorie”, Math. Zs., 12 (1922), 274 | DOI | MR | Zbl

[9] Ender A. Ya., Ender I. A., Lyutenko M. B., Polinomialnoe razlozhenie izotropnogo uravneniya Boltsmana i nezavisimost integrala stolknovenii otnositelno vybora bazisnykh funktsii, Preprint FTI No 1716, 1998