Three sources and three constituents of the formalism for a population with discrete age and stage structures
Matematičeskoe modelirovanie, Tome 14 (2002) no. 12, pp. 11-22.

Voir la notice de l'article provenant de la source Math-Net.Ru

To construct a dynamic model for a population of plants which differ in their chronological age and ontogenetic stage, a formalism is proposed which is distinct from a matrix description suggested earlier for populations whose individuals are classified with respect to two bases. The formalism is realized for a population of woodreed Calamagrostis canescens, a perennial species dominating in the grass layer of felled forest areas, and the model projection matrix is constructed as a set of 21 demographic and ontogenetic parameters. Characteristic properties of the matrix are investigated in the general case; an expression is deduced for the reproductive potential of a population with given parameters. It is shown that the equilibrium age-stage structure may lose “left-sidedness of the age spectrum”, a property that is traditionally checked in observations.
@article{MM_2002_14_12_a1,
     author = {D. O. Logofet},
     title = {Three sources and three constituents of the formalism for a population with discrete age and stage structures},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {11--22},
     publisher = {mathdoc},
     volume = {14},
     number = {12},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2002_14_12_a1/}
}
TY  - JOUR
AU  - D. O. Logofet
TI  - Three sources and three constituents of the formalism for a population with discrete age and stage structures
JO  - Matematičeskoe modelirovanie
PY  - 2002
SP  - 11
EP  - 22
VL  - 14
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2002_14_12_a1/
LA  - ru
ID  - MM_2002_14_12_a1
ER  - 
%0 Journal Article
%A D. O. Logofet
%T Three sources and three constituents of the formalism for a population with discrete age and stage structures
%J Matematičeskoe modelirovanie
%D 2002
%P 11-22
%V 14
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2002_14_12_a1/
%G ru
%F MM_2002_14_12_a1
D. O. Logofet. Three sources and three constituents of the formalism for a population with discrete age and stage structures. Matematičeskoe modelirovanie, Tome 14 (2002) no. 12, pp. 11-22. http://geodesic.mathdoc.fr/item/MM_2002_14_12_a1/

[1] Leslie P. H., “On the use of matrices in certain population mathematics”, Biometrika, 33 (1945), 183–212 | DOI | MR | Zbl

[2] Leslie P. H., “Some further notes on the use of matrices in population mathematics”, Biometrika, 35 (1948), 213–245 | MR | Zbl

[3] Hansen P. E., “Leslie matrix models”, Papers on Mathematical Ecology, I, ed. Csetenyi A., Department of Mathematics, Karl Marx University of Economics, Budapest, 1986, 1–139 | MR | Zbl

[4] Logofet D. O., Matrices and Graphs, CRC Press, Boca Raton, FL, 1993

[5] Caswell H., Matrix Population Models: Construction, Analysis, and Interpretation, 2nd ed., Sinauer Associates, Sunderland, MA, 2001

[6] Lefkovitch L. P., “The study of population growth in organisms grouped by stages”, Biometrics, 21 (1965), 1–18 | DOI

[7] Logofet D. O., Klochkova I. N., “Matematika modeli Lefkovicha: reproduktivnyi potentsial i asimptoticheskie tsikly”, Matem. modelirovanie, 14:10 (2002), 116–126 | MR | Zbl

[8] Law R., “A model for the dynamics of a plant population containing individuals classified by age and size”, Ecology, 64 (1983), 224–230 | DOI

[9] Csetenyi A. I., Logofet D. O., “Leslie model revisited: some generalizations for block structures”, Ecological Modelling, 48 (1989), 277–290 | DOI

[10] Logofet D. O., “O nerazlozhimosti i imprimitivnosti neotritsatelnykh matrits blochnoi struktury”, Doklady Akademii nauk SSSR, 308:1 (1989), 46–49 | MR | Zbl

[11] Logofet D. O., “K teorii matrichnykh modelei dinamiki populyatsii s vozrastnoi i dopolnitelnoi strukturami”, Zhurnal obschei biologii, 52:6 (1991), 793–804

[12] Ulanova N. G., Demidova A. N., Klochkova I. N., Logofet D. O., “Struktura i dinamika populyatsii veinika sedeyuschego Calamagrostis canescens”, Zhurnal obschei biologii, 63:6 (2002)

[13] Svirezhev Yu. M., Logofet D. O., Ustoichivost biologicheskikh soobschestv, Nauka, M., 1978 | MR

[14] Cook R. E., “Growth and development in clonal plant populations”, Population Biology and Evolution of Clonal Organisms, eds. Jackson J. B. C., L. W. Buss, R. E. Cook, Yale Univ. Press, New Haven, CT, USA, 1985, 259–296

[15] Harary F., Norman R. Z., Cartwright D., Structural Models: an Introduction to the Theory of Directed Graphs, John Wiley, New York, 1965 | MR | Zbl

[16] Roberts F. S., Diskretnye matematicheskie modeli s prilozheniyami k sotsialnym biologicheskim i ekologicheskim zadacham, Nauka, M., 1986 | MR | Zbl

[17] Voevodin V. V., Kuznetsov Yu. A., Matritsy i vychisleniya, Nauka, M., 1984 | MR | Zbl

[18] Uranov A. A., Serebryakova T. I., Tsenopopulyatsii rastenii (osnovnye ponyatiya i struktury), Nauka, M., 1978

[19] Serebryakova T. I., Sokolova T. G., Tsenopopulyatsii rastenii (ocherki populyatsionnoi biologii), Nauka, M., 1988