Stochastical simulation of dispersed particles scattering in the turbulent jets
Matematičeskoe modelirovanie, Tome 14 (2002) no. 10, pp. 77-82.

Voir la notice de l'article provenant de la source Math-Net.Ru

The simulation of turbulent impulse and heat transfer processes in the nonisothermal dispersed jets in the form of stochastic variant of discrete-trajectory approach has been developed. Influence of outflow conditions on particles dispersion pattern depend on value of satellite parameter, power of heat and initial turbulence level has been established. The velocity jet flow fluctuations show important influence on discrete particles dispersion. The developed model reduced to the results consistent with the known numerical and experimental data.
@article{MM_2002_14_10_a6,
     author = {K. N. Volkov and G. F. Gorshkov},
     title = {Stochastical simulation of dispersed particles scattering in the turbulent jets},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {77--82},
     publisher = {mathdoc},
     volume = {14},
     number = {10},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2002_14_10_a6/}
}
TY  - JOUR
AU  - K. N. Volkov
AU  - G. F. Gorshkov
TI  - Stochastical simulation of dispersed particles scattering in the turbulent jets
JO  - Matematičeskoe modelirovanie
PY  - 2002
SP  - 77
EP  - 82
VL  - 14
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2002_14_10_a6/
LA  - ru
ID  - MM_2002_14_10_a6
ER  - 
%0 Journal Article
%A K. N. Volkov
%A G. F. Gorshkov
%T Stochastical simulation of dispersed particles scattering in the turbulent jets
%J Matematičeskoe modelirovanie
%D 2002
%P 77-82
%V 14
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2002_14_10_a6/
%G ru
%F MM_2002_14_10_a6
K. N. Volkov; G. F. Gorshkov. Stochastical simulation of dispersed particles scattering in the turbulent jets. Matematičeskoe modelirovanie, Tome 14 (2002) no. 10, pp. 77-82. http://geodesic.mathdoc.fr/item/MM_2002_14_10_a6/

[1] Gorshkov G. F., “Teploobmen pri obtekanii pregrad gazodispersnymi struyami”, Trudy pervoi Rossiiskoi nats. konf. po teploobmenu. T.7. Dispersnye potoki i poristye sredy, Izd-vo MEI, M., 1994, 65–70

[2] Gosman A. D., Ioannides E., “Aspects of computer simulation of liquid-fueled combustors”, AIAA, 1981, 81–0323

[3] Mostafa A. A., Mondzhia Kh. Ts., Makdonell V. G., Samuelsen G. S., “Rasprostranenie zapylennykh struinykh techenii. Teoreticheskoe i eksperimentalnoe issledovanie”, Aerokosmicheskaya tekhnika, 1990, no. 3, 65–81

[4] Volkov K. N., Emelyanov V. N., “Stokhasticheskaya model dvizheniya kondensirovannoi chastitsy v kanale s pronitsaemymi stenkami”, Matem. modelirovanie, 11:3 (1999), 105–111

[5] Launder B. E., Morse A., Rodi W., Spalding D. B., Prediction of free shear flows. A comparison of the performance of six turbulence models, Free Turbulent Shear Flows. NASA Report, 1973, No SP-321 | MR

[6] Beloglazov B. P., Ginevskii A. S., “Vliyanie nachalnoi turbulentnosti i nachalnogo masshtaba turbulentnosti na kharakteristiki sputnykh strui”, Promyshlennaya aerodinamika, 1986, no. 1(33), 195–212

[7] Volkov K. N., Gorshkov G. F., “Modelirovanie protsessov turbulentnogo perenosa impulsa i tepla v neizotermicheskikh dispersnykh struyakh”, Teplomassoobmen MMF-2000, t. 6, ANK “ITMO im. A. V. Lykova” NANB, Minsk, 2000, 203–212