Mathematics of the Lefkovitch model: the reproductive potential and asymptotic cycles
Matematičeskoe modelirovanie, Tome 14 (2002) no. 10, pp. 116-126.

Voir la notice de l'article provenant de la source Math-Net.Ru

A discrete-time model of discrete-stage-structured population dynamics is studied which generalises the classic Leslie model. The notion of reproductive potential is defined via the characteristic polynomial of the matrix of demographic parameters (Lefkovitch matrix), and the reproductive potential theorem is proved. A model where the demographic parameters are season-specific is proved to have no cycles in its annual dynamics, and we have found an inter-seasonal cycle resulting in the equilibrium population structure at the annual time scale. The seasonal model is calibrated on observation data for a population of Aporrectodea caliginosa worms under conditions of rlfear-Moscow localities. We have substituted certain assumptions for uncertainty in the data, and validity of the assumptions can thereafter be judged from the model results amenable to empiric tests.
@article{MM_2002_14_10_a12,
     author = {D. O. Logofet and I. N. Klochkova},
     title = {Mathematics of the {Lefkovitch} model: the reproductive potential and asymptotic cycles},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {116--126},
     publisher = {mathdoc},
     volume = {14},
     number = {10},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2002_14_10_a12/}
}
TY  - JOUR
AU  - D. O. Logofet
AU  - I. N. Klochkova
TI  - Mathematics of the Lefkovitch model: the reproductive potential and asymptotic cycles
JO  - Matematičeskoe modelirovanie
PY  - 2002
SP  - 116
EP  - 126
VL  - 14
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2002_14_10_a12/
LA  - ru
ID  - MM_2002_14_10_a12
ER  - 
%0 Journal Article
%A D. O. Logofet
%A I. N. Klochkova
%T Mathematics of the Lefkovitch model: the reproductive potential and asymptotic cycles
%J Matematičeskoe modelirovanie
%D 2002
%P 116-126
%V 14
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2002_14_10_a12/
%G ru
%F MM_2002_14_10_a12
D. O. Logofet; I. N. Klochkova. Mathematics of the Lefkovitch model: the reproductive potential and asymptotic cycles. Matematičeskoe modelirovanie, Tome 14 (2002) no. 10, pp. 116-126. http://geodesic.mathdoc.fr/item/MM_2002_14_10_a12/

[1] Voevodin V. V., Kuznetsov Yu. A., Matritsy i vychisleniya, Nauka, M., 1984 | MR | Zbl

[2] Svirezhev Yu. M., Logofet D. O., Ustoichivost biologicheskikh soobschestv, Nauka, M., 1978 | MR

[3] Striganova B. R., Grabeklis A. R., Klochkova I. N., Logofet D. O., “Matematicheskaya model dinamiki populyatsii pashennogo chervya”, Izvestiya AN. Seriya biologicheskaya, 2003 (to appear)

[4] Fikhtengolts G. M., Kurs differentsialnogo i integralnogo ischisleniya, T. I, Nauka, M., 1970

[5] Chekanovskaya O. V., Dozhdevye chervi i pochvoobrazovanie, Izdatelstvo Akademii nauk SSSR, M.,-L., 1960

[6] Hansen P. E., “Leslie matrix models”, Papers on Mathematical Ecology, I, ed. Csetenyi A., Department of Mathematics, Karl Marx University of Economics, Budapest, 1986, 1–139 | MR | Zbl

[7] Harary F., Norman R. Z., Cartwright D., Structural Models: an Introduction to the Theory of Directed Graphs, John Wiley, New York, 1965, chap. 7 | MR | Zbl

[8] Lefkovitch L. P., “The study of population growth in organisms grouped by stages”, Biometrics, 21 (1965), 1–18 | DOI

[9] Leslie P. H., “On the use of matrices in certain population mathematics”, Biometrika, 33:3 (1945), 183–212 | DOI | MR | Zbl

[10] Leslie P. H., “Some further notes on the use of matrices in population mathematics”, Biometrika, 53:3–4 (1948), 213–245 | MR

[11] Logofet D. O., Matrices and Graphs, CRC Press, Boca Raton, FL, 1993