@article{MM_2002_14_10_a0,
author = {I. Ya. Ginzburg and S. I. Doronin and I. I. Maximov},
title = {Supercomputer simulations of multiple-quantum dynamics of nuclear spins in solids},
journal = {Matemati\v{c}eskoe modelirovanie},
pages = {3--16},
year = {2002},
volume = {14},
number = {10},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MM_2002_14_10_a0/}
}
TY - JOUR AU - I. Ya. Ginzburg AU - S. I. Doronin AU - I. I. Maximov TI - Supercomputer simulations of multiple-quantum dynamics of nuclear spins in solids JO - Matematičeskoe modelirovanie PY - 2002 SP - 3 EP - 16 VL - 14 IS - 10 UR - http://geodesic.mathdoc.fr/item/MM_2002_14_10_a0/ LA - ru ID - MM_2002_14_10_a0 ER -
I. Ya. Ginzburg; S. I. Doronin; I. I. Maximov. Supercomputer simulations of multiple-quantum dynamics of nuclear spins in solids. Matematičeskoe modelirovanie, Tome 14 (2002) no. 10, pp. 3-16. http://geodesic.mathdoc.fr/item/MM_2002_14_10_a0/
[1] M. Munowitz, “Exact simulation of multiple-quantum dynamics in solid-state NMR: implications for spin counting”, Mol. Phys., 71:5 (1990), 959–978 | DOI
[2] S. I. Doronin, I. I. Maksimov, E. B. Feldman, “Mnogokvantovaya dinamika odnomernykh sistem yadernykh spinov v tverdykh telakh”, ZhETF, 118:3(9) (2000), 687–700
[3] E. B. Fel'dman, S. Lacelle, “Multiple quantum NMR spin dynamics in one-dimensional quantum spin chains”, Chem. Phys. Lett., 253:1–2 (1996), 27–31 | DOI
[4] E. B. Fel'dman, S. Lacelle, “Low temperature multiple quantum nuclear magnetic resonance spin dynamics in one-dimensional quantum spin chains”, J. Chem. Phys., 106:16 (1997), 6768–6770 | DOI
[5] E. B. Fel'dman, S. Lacelle, “Multiple quantum nuclear magnetic resonance in one-dimensional quantum spin chains”, J. Chem. Phys., 107:18 (1997), 7067–7084 | DOI
[6] S. I. Doronin, E. B. Fel'dman, I. Ya. Guinzbourg, I. I. Maximov, “Supercomputer analysis of one-dimensional multiple-quantum dynamics of nuclear spins in solids”, Chem. Phys. Lett., 341:1–2 (2001), 144–152 | DOI
[7] G. Cho, J. P. Yesinowski, “${}^1H$ and ${}^{19}F$ multiple-quantum NMR dynamics in quasi-one-dimensional spin clusters in apatites”, J. Phys. Chem., 100:39 (1996), 15716–15725 | DOI
[8] J. Baum, M. Munowitz, A. N. Garroway, A. Pines, “Multiple-quantum dynamics in solid-state NMR”, J. Chem. Phys., 83:5 (1985), 2015–2025 | DOI
[9] N. A. Gershenfeld, I. L. Chuang, “Bulk spin-resonance quantum computation”, Science, 275(5298) (1997), 350–356 | DOI | MR
[10] D. G. Cory, A. F. Fahmy, T. F. Havel, “Ensemble quantum computing by NMR spectroscopy”, Proc. Natl. Acad. Sci. USA, 94:5 (1997), 1634–1639 | DOI
[11] D. P. Weitekamp, “Time- domain multiple-quantum NMR”, Adv. Magn. Reson., 11 (1983), 111–274
[12] S. Lacelle, S. J. Hwang, B. G. Gerstein, “Multiple-quantum nuclear-magnetic-resonance of solids – a cautionary note for data-analysis and interpretation”, J. Chem. Phys., 99:11 (1993), 8407–8413 | DOI
[13] P. Jordan, E. Wigner, Z. Phys., 47 (1928), 631 | DOI | Zbl
[14] Ch. Slikter, Osnovy teorii magnitnogo rezonansa, Mir, M., 1981
[15] L. D. Landau, E. M. Lifshits, Kvantovaya mekhanika, T. III, Nauka, M., 1974
[16] E. B. Fel'dman, M. G. Rudavets, “Regular and erratic quantum dynamics in spin 1/2 rings with an XY Hamiltonian”, Chem. Phys. Lett., 311:6 (1999), 453–458 | DOI
[17] E. Anderson, Z. Bai, C. Bischof et al., LAPACK Users' Guide, Society for Industrial and Applied Mathematics, Philadelphia, PA, 1995
[18] C. L. Lawson, R. J. Hanson, D. Kincaid, F. T. Krogh, “Basic linear algebra subprograms for Fortran usage”, ACM Trans. Math. Soft., 5 (1979), 308–323 | DOI | MR | Zbl
[19] L. S. Blackford, J. Choi, A. Cleary et al., ScaLAPACK Users' Guide, Society for Industrial and Applied Mathematics, Philadelphia, PA, 1997 | MR