Supercomputer simulations of multiple-quantum dynamics of nuclear spins in solids
Matematičeskoe modelirovanie, Tome 14 (2002) no. 10, pp. 3-16.

Voir la notice de l'article provenant de la source Math-Net.Ru

The effective algorithm is proposed for numerical solution of exactly solvable problems of intensities of multiple-quantum (MQ) coherences for one-dimensional systems of nuclear spins in solids. The detail description of the algorithm is given and it is shown its advantages in a comparison with other algorithms for such problems. The algorithm is realized as a program complex both for supercomputer systems with a flat RAM memory and for cluster ones with a distributed memory. The result of calculations of dynamics of a fifteen-spin system, which is described by the $2^{15}\times2^{15}$ matrix containing more than billion elements, is represented. The obtained results are applied to investigations of structures and dynamical processes in solids.
@article{MM_2002_14_10_a0,
     author = {I. Ya. Ginzburg and S. I. Doronin and I. I. Maximov},
     title = {Supercomputer simulations of multiple-quantum dynamics of nuclear spins in solids},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {3--16},
     publisher = {mathdoc},
     volume = {14},
     number = {10},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2002_14_10_a0/}
}
TY  - JOUR
AU  - I. Ya. Ginzburg
AU  - S. I. Doronin
AU  - I. I. Maximov
TI  - Supercomputer simulations of multiple-quantum dynamics of nuclear spins in solids
JO  - Matematičeskoe modelirovanie
PY  - 2002
SP  - 3
EP  - 16
VL  - 14
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2002_14_10_a0/
LA  - ru
ID  - MM_2002_14_10_a0
ER  - 
%0 Journal Article
%A I. Ya. Ginzburg
%A S. I. Doronin
%A I. I. Maximov
%T Supercomputer simulations of multiple-quantum dynamics of nuclear spins in solids
%J Matematičeskoe modelirovanie
%D 2002
%P 3-16
%V 14
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2002_14_10_a0/
%G ru
%F MM_2002_14_10_a0
I. Ya. Ginzburg; S. I. Doronin; I. I. Maximov. Supercomputer simulations of multiple-quantum dynamics of nuclear spins in solids. Matematičeskoe modelirovanie, Tome 14 (2002) no. 10, pp. 3-16. http://geodesic.mathdoc.fr/item/MM_2002_14_10_a0/

[1] M. Munowitz, “Exact simulation of multiple-quantum dynamics in solid-state NMR: implications for spin counting”, Mol. Phys., 71:5 (1990), 959–978 | DOI

[2] S. I. Doronin, I. I. Maksimov, E. B. Feldman, “Mnogokvantovaya dinamika odnomernykh sistem yadernykh spinov v tverdykh telakh”, ZhETF, 118:3(9) (2000), 687–700

[3] E. B. Fel'dman, S. Lacelle, “Multiple quantum NMR spin dynamics in one-dimensional quantum spin chains”, Chem. Phys. Lett., 253:1–2 (1996), 27–31 | DOI

[4] E. B. Fel'dman, S. Lacelle, “Low temperature multiple quantum nuclear magnetic resonance spin dynamics in one-dimensional quantum spin chains”, J. Chem. Phys., 106:16 (1997), 6768–6770 | DOI

[5] E. B. Fel'dman, S. Lacelle, “Multiple quantum nuclear magnetic resonance in one-dimensional quantum spin chains”, J. Chem. Phys., 107:18 (1997), 7067–7084 | DOI

[6] S. I. Doronin, E. B. Fel'dman, I. Ya. Guinzbourg, I. I. Maximov, “Supercomputer analysis of one-dimensional multiple-quantum dynamics of nuclear spins in solids”, Chem. Phys. Lett., 341:1–2 (2001), 144–152 | DOI

[7] G. Cho, J. P. Yesinowski, “${}^1H$ and ${}^{19}F$ multiple-quantum NMR dynamics in quasi-one-dimensional spin clusters in apatites”, J. Phys. Chem., 100:39 (1996), 15716–15725 | DOI

[8] J. Baum, M. Munowitz, A. N. Garroway, A. Pines, “Multiple-quantum dynamics in solid-state NMR”, J. Chem. Phys., 83:5 (1985), 2015–2025 | DOI

[9] N. A. Gershenfeld, I. L. Chuang, “Bulk spin-resonance quantum computation”, Science, 275(5298) (1997), 350–356 | DOI | MR

[10] D. G. Cory, A. F. Fahmy, T. F. Havel, “Ensemble quantum computing by NMR spectroscopy”, Proc. Natl. Acad. Sci. USA, 94:5 (1997), 1634–1639 | DOI

[11] D. P. Weitekamp, “Time- domain multiple-quantum NMR”, Adv. Magn. Reson., 11 (1983), 111–274

[12] S. Lacelle, S. J. Hwang, B. G. Gerstein, “Multiple-quantum nuclear-magnetic-resonance of solids – a cautionary note for data-analysis and interpretation”, J. Chem. Phys., 99:11 (1993), 8407–8413 | DOI

[13] P. Jordan, E. Wigner, Z. Phys., 47 (1928), 631 | DOI | Zbl

[14] Ch. Slikter, Osnovy teorii magnitnogo rezonansa, Mir, M., 1981

[15] L. D. Landau, E. M. Lifshits, Kvantovaya mekhanika, T. III, Nauka, M., 1974

[16] E. B. Fel'dman, M. G. Rudavets, “Regular and erratic quantum dynamics in spin 1/2 rings with an XY Hamiltonian”, Chem. Phys. Lett., 311:6 (1999), 453–458 | DOI

[17] E. Anderson, Z. Bai, C. Bischof et al., LAPACK Users' Guide, Society for Industrial and Applied Mathematics, Philadelphia, PA, 1995

[18] C. L. Lawson, R. J. Hanson, D. Kincaid, F. T. Krogh, “Basic linear algebra subprograms for Fortran usage”, ACM Trans. Math. Soft., 5 (1979), 308–323 | DOI | MR | Zbl

[19] L. S. Blackford, J. Choi, A. Cleary et al., ScaLAPACK Users' Guide, Society for Industrial and Applied Mathematics, Philadelphia, PA, 1997 | MR