An effective algorithm for differential equations of motion
Matematičeskoe modelirovanie, Tome 12 (2000) no. 6, pp. 9-14.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper presents eighth-order method for solution of differential equation. Legendre's nodes are used as argument of derivatives computing. That is why there are only four points per step for derivatives computing. This results decrease numerical noise. Adams type predictor-corrector is used to obtain initial values for single iteration of implicit Runge–Kutta algorithm, so the derivatives are computed twice for the each step. All quadrature coefficients which integrator uses are calculated beforehand (for uniform step, increasing step, decreasing step) to obtain minimum possible volume of computation.
@article{MM_2000_12_6_a1,
     author = {V. A. Stepaniants and D. V. L'vov},
     title = {An effective algorithm for differential equations of motion},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {9--14},
     publisher = {mathdoc},
     volume = {12},
     number = {6},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2000_12_6_a1/}
}
TY  - JOUR
AU  - V. A. Stepaniants
AU  - D. V. L'vov
TI  - An effective algorithm for differential equations of motion
JO  - Matematičeskoe modelirovanie
PY  - 2000
SP  - 9
EP  - 14
VL  - 12
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2000_12_6_a1/
LA  - ru
ID  - MM_2000_12_6_a1
ER  - 
%0 Journal Article
%A V. A. Stepaniants
%A D. V. L'vov
%T An effective algorithm for differential equations of motion
%J Matematičeskoe modelirovanie
%D 2000
%P 9-14
%V 12
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2000_12_6_a1/
%G ru
%F MM_2000_12_6_a1
V. A. Stepaniants; D. V. L'vov. An effective algorithm for differential equations of motion. Matematičeskoe modelirovanie, Tome 12 (2000) no. 6, pp. 9-14. http://geodesic.mathdoc.fr/item/MM_2000_12_6_a1/