Two-body relativistic equations for the bound-state problem with coulomb and linear potentials
Matematičeskoe modelirovanie, Tome 12 (2000) no. 12, pp. 79-96.

Voir la notice de l'article provenant de la source Math-Net.Ru

The recent investigations of the meson spectroscopy are often based on the models considering mesons as quark-antiquark bound states. These models are described by three-dimensional relativistic equations with various generalizations of Coulomb and linear potentials in the momentum space. Algorithms and codes are developed for numerical investigations of these equations. The generalized Continuous Analog of Newton's method is used. The numerical results are presented.
@article{MM_2000_12_12_a6,
     author = {I. V. Amirkhanov and E. V. Zemlyanaya and I. V. Puzynin and T. P. Puzynina},
     title = {Two-body relativistic equations for the bound-state problem with coulomb and linear potentials},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {79--96},
     publisher = {mathdoc},
     volume = {12},
     number = {12},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2000_12_12_a6/}
}
TY  - JOUR
AU  - I. V. Amirkhanov
AU  - E. V. Zemlyanaya
AU  - I. V. Puzynin
AU  - T. P. Puzynina
TI  - Two-body relativistic equations for the bound-state problem with coulomb and linear potentials
JO  - Matematičeskoe modelirovanie
PY  - 2000
SP  - 79
EP  - 96
VL  - 12
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2000_12_12_a6/
LA  - ru
ID  - MM_2000_12_12_a6
ER  - 
%0 Journal Article
%A I. V. Amirkhanov
%A E. V. Zemlyanaya
%A I. V. Puzynin
%A T. P. Puzynina
%T Two-body relativistic equations for the bound-state problem with coulomb and linear potentials
%J Matematičeskoe modelirovanie
%D 2000
%P 79-96
%V 12
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2000_12_12_a6/
%G ru
%F MM_2000_12_12_a6
I. V. Amirkhanov; E. V. Zemlyanaya; I. V. Puzynin; T. P. Puzynina. Two-body relativistic equations for the bound-state problem with coulomb and linear potentials. Matematičeskoe modelirovanie, Tome 12 (2000) no. 12, pp. 79-96. http://geodesic.mathdoc.fr/item/MM_2000_12_12_a6/