On the parson model of the orientational phase transition for a~system of ellipsoidal particles
Matematičeskoe modelirovanie, Tome 12 (2000) no. 10, pp. 3-18.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the Parson's nonlinear integral equation for the density of distribution of orientations of the axes of ellipsoidal particles. To construct the solutions describing anisotropic (nematic) states of the system, we use the theory of branching the solutions of nonlinear equations (the Lyapunov–Shmidt's theory) and numerical algorithms. The results obtained are used to study the thermodynamic properties of the system of ellipsoidal particles (the state equation) and to calculate the concentrations in isotropic and anisotropic (nematic) phases coexisting in the equilibrium state.
@article{MM_2000_12_10_a0,
     author = {L. D. \`Eskin and L. U. Bakhtieva},
     title = {On the parson model of the orientational phase transition for a~system of ellipsoidal particles},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {3--18},
     publisher = {mathdoc},
     volume = {12},
     number = {10},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2000_12_10_a0/}
}
TY  - JOUR
AU  - L. D. Èskin
AU  - L. U. Bakhtieva
TI  - On the parson model of the orientational phase transition for a~system of ellipsoidal particles
JO  - Matematičeskoe modelirovanie
PY  - 2000
SP  - 3
EP  - 18
VL  - 12
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2000_12_10_a0/
LA  - ru
ID  - MM_2000_12_10_a0
ER  - 
%0 Journal Article
%A L. D. Èskin
%A L. U. Bakhtieva
%T On the parson model of the orientational phase transition for a~system of ellipsoidal particles
%J Matematičeskoe modelirovanie
%D 2000
%P 3-18
%V 12
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2000_12_10_a0/
%G ru
%F MM_2000_12_10_a0
L. D. Èskin; L. U. Bakhtieva. On the parson model of the orientational phase transition for a~system of ellipsoidal particles. Matematičeskoe modelirovanie, Tome 12 (2000) no. 10, pp. 3-18. http://geodesic.mathdoc.fr/item/MM_2000_12_10_a0/