Development of the nonlinear moment method for solving relaxation problems
Matematičeskoe modelirovanie, Tome 11 (1999) no. 3, pp. 39-44
Cet article a éte moissonné depuis la source Math-Net.Ru
A new approach to solving the Boltzmann equation is based on the invariance of the collision integral with respect to the choice of basis functions. It is shown that the matrix elements corresponding to the moments of the nonlinear collision integral are related by simple recursive relations. All nonlinear matrix elements can be calculated if linear isotropic matrix elements are known. In isotropic case these relations were used to construct a numerical calculation procedure for power potentials which enables constructing the distribution function up to ten thermal velocities. The generalization of the obtained results on arbitrary potentials of interaction and on mixtures of gases is carried out.
@article{MM_1999_11_3_a4,
author = {A. I. Ender and I. A. Ender and M. B. Lutenko},
title = {Development of the nonlinear moment method for solving relaxation problems},
journal = {Matemati\v{c}eskoe modelirovanie},
pages = {39--44},
year = {1999},
volume = {11},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MM_1999_11_3_a4/}
}
TY - JOUR AU - A. I. Ender AU - I. A. Ender AU - M. B. Lutenko TI - Development of the nonlinear moment method for solving relaxation problems JO - Matematičeskoe modelirovanie PY - 1999 SP - 39 EP - 44 VL - 11 IS - 3 UR - http://geodesic.mathdoc.fr/item/MM_1999_11_3_a4/ LA - ru ID - MM_1999_11_3_a4 ER -
A. I. Ender; I. A. Ender; M. B. Lutenko. Development of the nonlinear moment method for solving relaxation problems. Matematičeskoe modelirovanie, Tome 11 (1999) no. 3, pp. 39-44. http://geodesic.mathdoc.fr/item/MM_1999_11_3_a4/