A~priori smoothness of solutions for number of equations of a~changing type
Matematičeskoe modelirovanie, Tome 2 (1990) no. 9, pp. 145-153.

Voir la notice de l'article provenant de la source Math-Net.Ru

For number of non-linear equations of the type $$ U_t=a''(U_x)U_{xx}+2\mu U U_x, $$ with sign changing function $a''(\xi)$ ($a''(\xi)\geqslant\delta>0$, $|\xi|\geqslant N$) a priori estimation $\|u_x\|_{W_2^{1,1}}$ for smooth solutions in obtained. Different form the previous investigations the case of $\mu\ne0$ and the more general form of the function $a$ are considered,Connection is marked of the problem considered with so-called Cahn–Hilliard equation by which the phase separation in the melts can be simulated.
@article{MM_1990_2_9_a12,
     author = {M. M. Lavrent'ev (Jn.)},
     title = {A~priori smoothness of solutions for number of equations of a~changing type},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {145--153},
     publisher = {mathdoc},
     volume = {2},
     number = {9},
     year = {1990},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_1990_2_9_a12/}
}
TY  - JOUR
AU  - M. M. Lavrent'ev (Jn.)
TI  - A~priori smoothness of solutions for number of equations of a~changing type
JO  - Matematičeskoe modelirovanie
PY  - 1990
SP  - 145
EP  - 153
VL  - 2
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_1990_2_9_a12/
LA  - ru
ID  - MM_1990_2_9_a12
ER  - 
%0 Journal Article
%A M. M. Lavrent'ev (Jn.)
%T A~priori smoothness of solutions for number of equations of a~changing type
%J Matematičeskoe modelirovanie
%D 1990
%P 145-153
%V 2
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_1990_2_9_a12/
%G ru
%F MM_1990_2_9_a12
M. M. Lavrent'ev (Jn.). A~priori smoothness of solutions for number of equations of a~changing type. Matematičeskoe modelirovanie, Tome 2 (1990) no. 9, pp. 145-153. http://geodesic.mathdoc.fr/item/MM_1990_2_9_a12/