A priori smoothness of solutions for number of equations of a changing type
Matematičeskoe modelirovanie, Tome 2 (1990) no. 9, pp. 145-153
Cet article a éte moissonné depuis la source Math-Net.Ru
For number of non-linear equations of the type $$ U_t=a''(U_x)U_{xx}+2\mu U U_x, $$ with sign changing function $a''(\xi)$ ($a''(\xi)\geqslant\delta>0$, $|\xi|\geqslant N$) a priori estimation $\|u_x\|_{W_2^{1,1}}$ for smooth solutions in obtained. Different form the previous investigations the case of $\mu\ne0$ and the more general form of the function $a$ are considered,Connection is marked of the problem considered with so-called Cahn–Hilliard equation by which the phase separation in the melts can be simulated.
@article{MM_1990_2_9_a12,
author = {M. M. Lavrent'ev (Jn.)},
title = {A~priori smoothness of solutions for number of equations of a~changing type},
journal = {Matemati\v{c}eskoe modelirovanie},
pages = {145--153},
year = {1990},
volume = {2},
number = {9},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MM_1990_2_9_a12/}
}
M. M. Lavrent'ev (Jn.). A priori smoothness of solutions for number of equations of a changing type. Matematičeskoe modelirovanie, Tome 2 (1990) no. 9, pp. 145-153. http://geodesic.mathdoc.fr/item/MM_1990_2_9_a12/