Уравнение Лёвнера, неподвижные точки и~угловая производная
Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 85 (2024) no. 1, pp. 107-127.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MMO_2024_85_1_a8,
     author = {V. V. Goryainov},
     title = {{\CYRU}{\cyrr}{\cyra}{\cyrv}{\cyrn}{\cyre}{\cyrn}{\cyri}{\cyre} {{\CYRL}{\cyryo}{\cyrv}{\cyrn}{\cyre}{\cyrr}{\cyra},} {\cyrn}{\cyre}{\cyrp}{\cyro}{\cyrd}{\cyrv}{\cyri}{\cyrzh}{\cyrn}{\cyrery}{\cyre} {\cyrt}{\cyro}{\cyrch}{\cyrk}{\cyri} {\cyri}~{\cyru}{\cyrg}{\cyrl}{\cyro}{\cyrv}{\cyra}{\cyrya} {\cyrp}{\cyrr}{\cyro}{\cyri}{\cyrz}{\cyrv}{\cyro}{\cyrd}{\cyrn}{\cyra}{\cyrya}},
     journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {107--127},
     publisher = {mathdoc},
     volume = {85},
     number = {1},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MMO_2024_85_1_a8/}
}
TY  - JOUR
AU  - V. V. Goryainov
TI  - Уравнение Лёвнера, неподвижные точки и~угловая производная
JO  - Trudy Moskovskogo matematičeskogo obŝestva
PY  - 2024
SP  - 107
EP  - 127
VL  - 85
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MMO_2024_85_1_a8/
LA  - ru
ID  - MMO_2024_85_1_a8
ER  - 
%0 Journal Article
%A V. V. Goryainov
%T Уравнение Лёвнера, неподвижные точки и~угловая производная
%J Trudy Moskovskogo matematičeskogo obŝestva
%D 2024
%P 107-127
%V 85
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MMO_2024_85_1_a8/
%G ru
%F MMO_2024_85_1_a8
V. V. Goryainov. Уравнение Лёвнера, неподвижные точки и~угловая производная. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 85 (2024) no. 1, pp. 107-127. http://geodesic.mathdoc.fr/item/MMO_2024_85_1_a8/

[1] Löwner K., “Untersuchungen über schlichte konforme Abbildungen des Einheitskreises. I”, Math. Ann., 89:1–2 (1923), 103–121 | DOI | MR

[2] Bieberbach L., “Über die Koeffizienten derjenigen Potenzreihen, welche eine schlichte Abbildung des Einheitskreises vermitteln”, S. B. Preuss. Akad. Wiss., 138 (1916), 940–955

[3] de Branges L., A proof of the Bieberbach conjecture, Preprint E–5–84, LOMI, Leningrad, 1984 | MR

[4] de Branges L., “A proof of the Bieberbach conjecture”, Acta Math., 154:1–2 (1985), 137–152 | DOI | MR

[5] Goluzin G. M., “Vnutrennie zadachi teorii odnolistnykh funktsii”, UMN, 1939, no. 6, 26–89

[6] Goryainov V. V., “Evolyutsionnye semeistva konformnykh otobrazhenii s nepodvizhnymi tochkami i uravnenie Levnera — Kufareva”, Matem. sb., 206:1 (2015), 39–68 | DOI | MR

[7] Schramm O., “Scaling limits of loop-erased random walks and uniform spanning trees”, Israel J. Math., 118 (2000), 221–288 | DOI | MR

[8] Goluzin G. M., Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966 | MR

[9] Kufarev P. P., “Ob odnoparametricheskikh semeistvakh analiticheskikh funktsii”, Matem. sb., 13(55):1 (1943), 87–118

[10] Ahlfors L. V., Conformal invariants: topics in geometric function theory, McGraw–Hill Series in Higher Mathematics, McGraw–Hill Book Co., New York–Düsseldorf–Johannesburg, 1973 | MR

[11] Goryainov V. V., “Golomorfnye otobrazheniya edinichnogo kruga v sebya s dvumya nepodvizhnymi tochkami”, Matem. sb., 208:3 (2017), 54–71 | DOI | MR

[12] Goryainov V. V., “Golomorfnye otobrazheniya polosy v sebya s ogranichennym iskazheniem na beskonechnosti”, Trudy MIAN, 298, 2017, 101–111 | DOI

[13] Koddington E. A., Levinson N., Teoriya obyknovennykh differentsialnykh uravnenii, IL, M., 1958