ВВ-соответствие в~теории твердого тела
Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 84 (2023) no. 2, pp. 179-203.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MMO_2023_84_2_a0,
     author = {A. G. Sergeev},
     title = {{\CYRV}{\CYRV}-{\cyrs}{\cyro}{\cyro}{\cyrt}{\cyrv}{\cyre}{\cyrt}{\cyrs}{\cyrt}{\cyrv}{\cyri}{\cyre} {\cyrv}~{\cyrt}{\cyre}{\cyro}{\cyrr}{\cyri}{\cyri} {\cyrt}{\cyrv}{\cyre}{\cyrr}{\cyrd}{\cyro}{\cyrg}{\cyro} {\cyrt}{\cyre}{\cyrl}{\cyra}},
     journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {179--203},
     publisher = {mathdoc},
     volume = {84},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MMO_2023_84_2_a0/}
}
TY  - JOUR
AU  - A. G. Sergeev
TI  - ВВ-соответствие в~теории твердого тела
JO  - Trudy Moskovskogo matematičeskogo obŝestva
PY  - 2023
SP  - 179
EP  - 203
VL  - 84
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MMO_2023_84_2_a0/
LA  - ru
ID  - MMO_2023_84_2_a0
ER  - 
%0 Journal Article
%A A. G. Sergeev
%T ВВ-соответствие в~теории твердого тела
%J Trudy Moskovskogo matematičeskogo obŝestva
%D 2023
%P 179-203
%V 84
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MMO_2023_84_2_a0/
%G ru
%F MMO_2023_84_2_a0
A. G. Sergeev. ВВ-соответствие в~теории твердого тела. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 84 (2023) no. 2, pp. 179-203. http://geodesic.mathdoc.fr/item/MMO_2023_84_2_a0/

[1] M. Atya, Lektsii po $K$-teorii, Mir, M., 1967

[2] N. Ashkroft, N. Mermin, Fizika tverdogo tela, Mir, M., 1979

[3] G. G. Kasparov, “Operatornyi $K$-funktor i rasshireniya $C^{*}$-algebr”, Izv. AN SSSR. Ser. matem., 44:3 (1980), 571–636 | Zbl

[4] E. M. Lifshits, L. P. Pitaevskii, Statisticheskaya fizika, v. 2, Nauka, M., 1978

[5] A. Alldridge, C. Max, M. R. Zirnbauer, “Bulk-boundary correspondence for disordered free-fermion topological phases”, Comm. Math. Phys., 377:3 (2020), 1761–1821 | DOI | MR | Zbl

[6] J. Bellissard, A. van Elst, H. Schulz-Baldes, “The noncommutative geometry of the quantum Hall effect”, J. Math. Phys., 35:10 (1994), 5373–5451 | DOI | MR | Zbl

[7] F. A. Berezin, M. A. Shubin, The Schrödinger equation, Kluwer, Boston, 1991 | MR | Zbl

[8] C. Bourne, J. Kellendonk, A. Rennie, “The $K$-theoretic bulk-edge correspondence for topological insulators”, Ann. Inst. Poincaré, 18:5 (2017), 1833–1866 | DOI | MR | Zbl

[9] O. Bratteli, D. W. Robinson, Operator algebras and quantum statistical mechanics, v. II, Springer, Berlin, 1996 | MR

[10] A. van Daele, “$K$-theory for graded Banach algebras. I”, Quart. J. Math. Oxford Ser. (2), 39 (1988), 185–199 | DOI | MR | Zbl

[11] A. van Daele, “$K$-theory for graded Banach algebras. II”, Pacific J. Math., 134 (1988), 377–392 | DOI | MR | Zbl

[12] C. L. Kane, E. J. Mele, “Quantum spin Hall effect in graphene”, Phys. Rev. Lett., 95 (2005), 226801 | DOI

[13] C. L. Kane, E. J. Mele, “$\mathbb{Z}_2$ topological order and the quantum spin Hall effect”, Phys. Rev. Lett, 95 (2005), 146802 | DOI

[14] R. Kennedy, M. R. Zirnbauer, “Bott periodicity for $\mathbb{Z}_2$ symmetric ground states of gapped free-fermion systems”, Commun. Math. Phys., 342 (2016), 909–963 | DOI | MR | Zbl

[15] A. Kitaev, “Periodic table for topological insulators and superconductors”, Adv. Theor. Phys. AIP Conf. Proc., 1134 (2009), 22–30 | Zbl

[16] B. Laughlin, “Quantized Hall conductance in two dimensions”, Phys Rev., B23 (1981), 5232

[17] E. Prodan, H. Schulz-Baldes, Bulk and boundary invariants for complex topological insulators, Math. Phys. Studies, Springer, Cham, 2016 | DOI | MR | Zbl

[18] I. E. Sigal, G. W. Mackey, Mathematical problems of relativistic physics, Lectures in Applied Mathematics, 2, AMS, NY, 1963 | MR

[19] D. J. Thouless, M. Kohmoto, M. P. Nightingale, M. den Nijs, “Quantized Hall conductance in a two-dimensional periodic potential”, Phys. Rev. Lett., 49 (1982), 405–408 | DOI | MR