Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MMO_2023_84_2_a0, author = {A. G. Sergeev}, title = {{\CYRV}{\CYRV}-{\cyrs}{\cyro}{\cyro}{\cyrt}{\cyrv}{\cyre}{\cyrt}{\cyrs}{\cyrt}{\cyrv}{\cyri}{\cyre} {\cyrv}~{\cyrt}{\cyre}{\cyro}{\cyrr}{\cyri}{\cyri} {\cyrt}{\cyrv}{\cyre}{\cyrr}{\cyrd}{\cyro}{\cyrg}{\cyro} {\cyrt}{\cyre}{\cyrl}{\cyra}}, journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva}, pages = {179--203}, publisher = {mathdoc}, volume = {84}, number = {2}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MMO_2023_84_2_a0/} }
A. G. Sergeev. ВВ-соответствие в~теории твердого тела. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 84 (2023) no. 2, pp. 179-203. http://geodesic.mathdoc.fr/item/MMO_2023_84_2_a0/
[1] M. Atya, Lektsii po $K$-teorii, Mir, M., 1967
[2] N. Ashkroft, N. Mermin, Fizika tverdogo tela, Mir, M., 1979
[3] G. G. Kasparov, “Operatornyi $K$-funktor i rasshireniya $C^{*}$-algebr”, Izv. AN SSSR. Ser. matem., 44:3 (1980), 571–636 | Zbl
[4] E. M. Lifshits, L. P. Pitaevskii, Statisticheskaya fizika, v. 2, Nauka, M., 1978
[5] A. Alldridge, C. Max, M. R. Zirnbauer, “Bulk-boundary correspondence for disordered free-fermion topological phases”, Comm. Math. Phys., 377:3 (2020), 1761–1821 | DOI | MR | Zbl
[6] J. Bellissard, A. van Elst, H. Schulz-Baldes, “The noncommutative geometry of the quantum Hall effect”, J. Math. Phys., 35:10 (1994), 5373–5451 | DOI | MR | Zbl
[7] F. A. Berezin, M. A. Shubin, The Schrödinger equation, Kluwer, Boston, 1991 | MR | Zbl
[8] C. Bourne, J. Kellendonk, A. Rennie, “The $K$-theoretic bulk-edge correspondence for topological insulators”, Ann. Inst. Poincaré, 18:5 (2017), 1833–1866 | DOI | MR | Zbl
[9] O. Bratteli, D. W. Robinson, Operator algebras and quantum statistical mechanics, v. II, Springer, Berlin, 1996 | MR
[10] A. van Daele, “$K$-theory for graded Banach algebras. I”, Quart. J. Math. Oxford Ser. (2), 39 (1988), 185–199 | DOI | MR | Zbl
[11] A. van Daele, “$K$-theory for graded Banach algebras. II”, Pacific J. Math., 134 (1988), 377–392 | DOI | MR | Zbl
[12] C. L. Kane, E. J. Mele, “Quantum spin Hall effect in graphene”, Phys. Rev. Lett., 95 (2005), 226801 | DOI
[13] C. L. Kane, E. J. Mele, “$\mathbb{Z}_2$ topological order and the quantum spin Hall effect”, Phys. Rev. Lett, 95 (2005), 146802 | DOI
[14] R. Kennedy, M. R. Zirnbauer, “Bott periodicity for $\mathbb{Z}_2$ symmetric ground states of gapped free-fermion systems”, Commun. Math. Phys., 342 (2016), 909–963 | DOI | MR | Zbl
[15] A. Kitaev, “Periodic table for topological insulators and superconductors”, Adv. Theor. Phys. AIP Conf. Proc., 1134 (2009), 22–30 | Zbl
[16] B. Laughlin, “Quantized Hall conductance in two dimensions”, Phys Rev., B23 (1981), 5232
[17] E. Prodan, H. Schulz-Baldes, Bulk and boundary invariants for complex topological insulators, Math. Phys. Studies, Springer, Cham, 2016 | DOI | MR | Zbl
[18] I. E. Sigal, G. W. Mackey, Mathematical problems of relativistic physics, Lectures in Applied Mathematics, 2, AMS, NY, 1963 | MR
[19] D. J. Thouless, M. Kohmoto, M. P. Nightingale, M. den Nijs, “Quantized Hall conductance in a two-dimensional periodic potential”, Phys. Rev. Lett., 49 (1982), 405–408 | DOI | MR