Chebyshev–Pad\'e approximants for multivalued functions
Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 83 (2022) no. 2, pp. 319-344.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper discusses the connection between the linear Chebyshev–Padé approximants for an analytic function $f$ and diagonal type I Hermite–Padé polynomials for the set of functions $[1, f_1, f_2]$, where the pair of functions $f_1$, $f_2$ forms a Nikishin system. Both problems can ultimately be reduced to certain convergence problems for multipoint Padé approximants. On the other hand, the denominators of multipoint Padé approximants are non-Hermitian orthogonal polynomials with analytical weights. Thus, to study all the above problems, the general method created by Herbert Stahl can be applied. Stahl’s method is not yet sufficiently developed to obtain general results on these problems. In particular, many key convergence problems for Chebyshev–Padé approximants for functions with arbitrary configurations of branch points remain open. In this paper, we consider several important general and particular results related to this case, some already well known, and also formulate two general hypotheses in the indicated direction.
@article{MMO_2022_83_2_a5,
     author = {E. A. Rakhmanov and S. P. Suetin},
     title = {Chebyshev{\textendash}Pad\'e approximants for multivalued functions},
     journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {319--344},
     publisher = {mathdoc},
     volume = {83},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MMO_2022_83_2_a5/}
}
TY  - JOUR
AU  - E. A. Rakhmanov
AU  - S. P. Suetin
TI  - Chebyshev–Pad\'e approximants for multivalued functions
JO  - Trudy Moskovskogo matematičeskogo obŝestva
PY  - 2022
SP  - 319
EP  - 344
VL  - 83
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MMO_2022_83_2_a5/
LA  - ru
ID  - MMO_2022_83_2_a5
ER  - 
%0 Journal Article
%A E. A. Rakhmanov
%A S. P. Suetin
%T Chebyshev–Pad\'e approximants for multivalued functions
%J Trudy Moskovskogo matematičeskogo obŝestva
%D 2022
%P 319-344
%V 83
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MMO_2022_83_2_a5/
%G ru
%F MMO_2022_83_2_a5
E. A. Rakhmanov; S. P. Suetin. Chebyshev–Pad\'e approximants for multivalued functions. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 83 (2022) no. 2, pp. 319-344. http://geodesic.mathdoc.fr/item/MMO_2022_83_2_a5/

[1] A. I. Aptekarev, “Asimptotika approksimatsii Ermita–Pade dlya pary funktsii s tochkami vetvleniya”, Dokl. RAN, 422:4 (2008), 443–445 | Zbl

[2] V. I. Buslaev, A. Martines-Finkelshtein, S. P. Suetin, “Metod vnutrennikh variatsii i suschestvovanie $S$-kompaktov”, Analiticheskie i geometricheskie voprosy kompleksnogo analiza, Sb. statei, Trudy MIAN, 279, Nauka, M., 2012, 31–58

[3] V. I. Buslaev, “O skhodimosti mnogotochechnykh approksimatsii Pade kusochno analiticheskikh funktsii”, Matem. sb., 204:2 (2013), 39–72 | DOI | Zbl

[4] V. I. Buslaev, “O skhodimosti $m$-tochechnykh approksimatsii Pade nabora mnogoznachnykh analiticheskikh funktsii”, Matem. sb., 206:2 (2015), 5–30 | DOI | MR | Zbl

[5] V. I. Buslaev, “O nizhnei otsenke skorosti skhodimosti mnogotochechnykh approksimatsii Pade kusochno analiticheskikh funktsii”, Izv. RAN. Ser. matem., 85:3 (2021), 13–29 | DOI | MR | Zbl

[6] A. A. Gonchar, E. A. Rakhmanov, “Ravnovesnye raspredeleniya i skorost ratsionalnoi approksimatsii analiticheskikh funktsii”, Matem. sb., 134(176):3(11) (1987), 306–352 | Zbl

[7] A. A. Gonchar, E. A. Rakhmanov, S. P. Suetin, “O skhodimosti approksimatsii Pade ortogonalnykh razlozhenii”, Teoriya chisel, algebra, matematicheskii analiz i ikh prilozheniya, Sb. statei, Tr. MIAN, 200, Nauka, M., 1991, 136–146

[8] A. A. Gonchar, E. A. Rakhmanov, S. P. Suetin, “Approksimatsii Pade–Chebysheva dlya mnogoznachnykh analiticheskikh funktsii, variatsiya ravnovesnoi energii i $S$-svoistvo statsionarnykh kompaktov”, UMN, 66:6(402) (2011), 3–36 | DOI | MR | Zbl

[9] O. L. Ibryaeva, “Dostatochnoe uslovie edinstvennosti lineinoi approksimatsii Pade–Chebysheva”, Izv. Chelyabinskogo nauchnogo tsentra UrO RAN, 17:4 (2002), 1–5 | MR

[10] N. R. Ikonomov, S. P. Suetin, “Skalyarnaya zadacha ravnovesiya i predelnoe raspredelenie nulei polinomov Ermita–Pade II tipa”, Sovremennye problemy matematicheskoi i teoreticheskoi fiziki, Sb. statei, Trudy MIAN, 309, MIAN, M., 2020, 174–197 | DOI | MR

[11] N. R. Ikonomov, S. P. Suetin, “Algoritm Viskovatova dlya polinomov Ermita–Pade”, Matem. sb., 212:9 (2021), 94–118 | DOI | MR | Zbl

[12] A. V. Komlov, R. V. Palvelev, S. P. Suetin, E. M. Chirka, “Approksimatsii Ermita–Pade dlya meromorfnykh funktsii na kompaktnoi rimanovoi poverkhnosti”, UMN, 72:4(436) (2017), 95–130 | DOI | MR

[13] A. Martines-Finkelshtein, E. A. Rakhmanov, S. P. Suetin, “Variatsiya ravnovesnoi mery i $S$-svoistvo statsionarnogo kompakta”, UMN, 66:1(397) (2011), 183–184 | DOI | MR | Zbl

[14] Nikishin E. M., Sorokin V. N., Ratsionalnye approksimatsii i ortogonalnost, Nauka, M., 1988

[15] E. A. Perevoznikova, E. A. Rakhmanov, Variatsiya ravnovesnoi energii i $S$-svoistvo kompaktov minimalnoi emkosti, Preprint, M., 1994

[16] E. A. Rakhmanov, S. P. Suetin, “Raspredelenie nulei polinomov Ermita–Pade dlya pary funktsii, obrazuyuschei sistemu Nikishina”, Matem. sb., 204:9 (2013), 115–160 | DOI | MR | Zbl

[17] E. A. Rakhmanov, “Raspredelenie nulei polinomov Ermita–Pade v sluchae Anzhelesko”, UMN, 73:3(441) (2018), 89–156 | DOI | MR | Zbl

[18] A. P. Starovoitov, N. V. Ryabchenko, A. A. Drapeza, “Kriterii suschestvovaniya i edinstvennosti poliortogonalnykh mnogochlenov pervogo tipa”, PFMT, 2020, no. 3(44), 82–86

[19] S. P. Suetin, “O teoreme Montessu de Bolora dlya ratsionalnykh approksimatsii ortogonalnykh razlozhenii”, Matem. sb., 114(156):3 (1981), 451–464 | MR | Zbl

[20] S. P. Suetin, “O suschestvovanii nelineinykh approksimatsii Pade–Chebysheva dlya analiticheskikh funktsii”, Matem. zametki, 86:2 (2009), 290–303 | DOI | Zbl

[21] S. P. Suetin, “Raspredelenie nulei polinomov Pade i analiticheskoe prodolzhenie”, UMN, 70:5(425) (2015), 121–174 | DOI | MR | Zbl

[22] S. P. Suetin, “O raspredelenii nulei polinomov Ermita–Pade dlya kompleksnoi sistemy Nikishina”, UMN, 73:2(440) (2018), 183–184 | DOI | MR | Zbl

[23] S. P. Suetin, “Ob odnom primere sistemy Nikishina”, Matem. zametki, 104:6(440) (2018), 918–929 | DOI | Zbl

[24] S. P. Suetin, “O novom podkhode k zadache o raspredelenii nulei polinomov Ermita–Pade dlya sistemy Nikishina”, Kompleksnyi analiz, matematicheskaya fizika i prilozheniya, Sb. statei, Trudy MIAN, 301, Nauka, M., 2018, 259–275 | DOI

[25] S. P. Suetin, “Pryamoe dokazatelstvo teoremy Shtalya dlya nekotorogo klassa algebraicheskikh funktsii”, Matem. sb., 213:11 (2022), 102–117 | DOI | MR

[26] E. M. Chirka, “Potentsialy na kompaktnoi rimanovoi poverkhnosti”, Kompleksnyi analiz, matematicheskaya fizika i prilozheniya, Sb. statei, Trudy MIAN, 301, Nauka, M., 2018, 287–319 | DOI

[27] E. M. Chirka, “Emkosti na kompaktnoi rimanovoi poverkhnosti”, Analiz i matematicheskaya fizika, Sb. statei, Trudy MIAN, 311, MIAN, M., 2020, 41–83 | DOI

[28] A. I. Aptekarev, A. B. J. Kuijlaars, W. Van Assche, “Asymptotics of Hermite–Padé rational approximants for two analytic functions with separated pairs of branch points (case of genus 0)”, IMRP, 2007, no. 4, rpm007 | MR

[29] J. L. Aurentz, L. N. Trefethen, “Chopping a Chebyshev series”, ACM Trans. Math. Software, 43:4 (2017), 33, 21 pp. | DOI | MR | Zbl

[30] G. A., Jr. Baker, P. Graves-Morris, Padé approximants, Encyclopedia of Mathematics and its Applications, 59, Cambridge Univ. Press, Cambridge, 1996 | MR

[31] J. P. Boyd, Chebyshev and Fourier spectral methods, Dover Publ., Inc, NY, 2001 | MR | Zbl

[32] J. S. R. Chisholm, A. K. Common, “Generalisations of Padé approximation for Chebyshev and Fourier series”, E. B. Christoffel (Aachen/Monschau, 1979), Birkhäuser, Basel–Boston, Mass., 1981, 212–231 | DOI | MR

[33] C. W. Clenshaw, K. Lord, “Rational approximations from Chebyshev series”, Studies in numerical analysis, Academic Press, London, 1974, 95–113 | MR

[34] J. Fleischer, “Nonlinear Padé approximants for Legendre series”, J. Math. Phys., 14:2 (1973), 246–248 | DOI | MR | Zbl

[35] A. A. Gonchar, E. A. Rakhmanov, S. P. Suetin, “On the rate of convergence of Padé approximants of orthogonal expansions”, Progress in approximation theory (Tampa, FL, 1990), Springer Ser. Comput. Math., 19, Springer, New York, 1992, 169–190 | DOI | MR | Zbl

[36] P. Henrici, “An algorithm for analytic continuation”, SIAM J. Numer. Anal., 3:1 (1966), 67–78 | DOI | MR | Zbl

[37] J. T., Jr. Holdeman, “A method for the approximation of functions defined by formal series expansions in orthogonal polynomials”, Math. Comp., 23:106 (1969), 275–287 | DOI | MR | Zbl

[38] N. R. Ikonomov, S. P. Suetin, HEPAComp: Hermite–Padé approximant computation, Version 1.3/15.10.2020, , 2020 http://justmathbg.info/hepacomp.html

[39] A. Martínez-Finkelshtein, E. A. Rakhmanov, S. P. Suetin, “Asymptotics of type I Hermite–Padé polynomials for semiclassical functions”, Modern trends in constructive function theory, Contemp. Math., 661, AMS, Providence, RI, 2016, 199–228 | DOI | MR | Zbl

[40] A. Martinez-Finkelshtein, E. A. Rakhmanov, Do orthogonal polynomials dream of symmetric curves?, Found. Comput. Math., 16:6 (2016), 1697–1736 | DOI | MR | Zbl

[41] J. Nuttall, “Asymptotics of diagonal Hermite–Padé polynomials”, J. Approx. Theory, 42:4 (1984), 299–386 | DOI | MR | Zbl

[42] E. A. Rakhmanov, Recent advances in orthogonal polynomials, special functions and their applications, Contemp. Math., 578, AMS, Providence, RI, 2012, Orthogonal polynomials and $S$-curves | MR

[43] H. Stahl, “Asymptotics of Hermite–Padé polynomials and related convergence results. A summary of results”, Nonlinear numerical methods and rational approximation (Wilrijk, 1987), Math. Appl., 43, Reidel, Dordrecht, 1988, 23–53 | MR | Zbl

[44] H. Stahl, “The convergence of Padé approximants to functions with branch points”, J. Approx. Theory, 91:2 (1997), 139–204 | DOI | MR | Zbl

[45] H. R. Stahl, Sets of minimal capacity and extremal domains, arXiv: 1205.3811

[46] G. Szegő, Orthogonal polynomials, American Mathematical Society Colloquium Publications, XXIII, AMS, Providence, R.I., 1975 | Zbl

[47] L. N. Trefethen, Approximation theory and approximation practice, SIAM, Philadelphia, PA, 2013 | MR | Zbl

[48] L. N. Trefethen, “Quantifying the ill-conditioning of analytic continuation”, BIT, 60:4 (2020), 901–915 | DOI | MR | Zbl