Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MMO_2022_83_2_a5, author = {E. A. Rakhmanov and S. P. Suetin}, title = {Chebyshev{\textendash}Pad\'e approximants for multivalued functions}, journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva}, pages = {319--344}, publisher = {mathdoc}, volume = {83}, number = {2}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MMO_2022_83_2_a5/} }
TY - JOUR AU - E. A. Rakhmanov AU - S. P. Suetin TI - Chebyshev–Pad\'e approximants for multivalued functions JO - Trudy Moskovskogo matematičeskogo obŝestva PY - 2022 SP - 319 EP - 344 VL - 83 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MMO_2022_83_2_a5/ LA - ru ID - MMO_2022_83_2_a5 ER -
E. A. Rakhmanov; S. P. Suetin. Chebyshev–Pad\'e approximants for multivalued functions. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 83 (2022) no. 2, pp. 319-344. http://geodesic.mathdoc.fr/item/MMO_2022_83_2_a5/
[1] A. I. Aptekarev, “Asimptotika approksimatsii Ermita–Pade dlya pary funktsii s tochkami vetvleniya”, Dokl. RAN, 422:4 (2008), 443–445 | Zbl
[2] V. I. Buslaev, A. Martines-Finkelshtein, S. P. Suetin, “Metod vnutrennikh variatsii i suschestvovanie $S$-kompaktov”, Analiticheskie i geometricheskie voprosy kompleksnogo analiza, Sb. statei, Trudy MIAN, 279, Nauka, M., 2012, 31–58
[3] V. I. Buslaev, “O skhodimosti mnogotochechnykh approksimatsii Pade kusochno analiticheskikh funktsii”, Matem. sb., 204:2 (2013), 39–72 | DOI | Zbl
[4] V. I. Buslaev, “O skhodimosti $m$-tochechnykh approksimatsii Pade nabora mnogoznachnykh analiticheskikh funktsii”, Matem. sb., 206:2 (2015), 5–30 | DOI | MR | Zbl
[5] V. I. Buslaev, “O nizhnei otsenke skorosti skhodimosti mnogotochechnykh approksimatsii Pade kusochno analiticheskikh funktsii”, Izv. RAN. Ser. matem., 85:3 (2021), 13–29 | DOI | MR | Zbl
[6] A. A. Gonchar, E. A. Rakhmanov, “Ravnovesnye raspredeleniya i skorost ratsionalnoi approksimatsii analiticheskikh funktsii”, Matem. sb., 134(176):3(11) (1987), 306–352 | Zbl
[7] A. A. Gonchar, E. A. Rakhmanov, S. P. Suetin, “O skhodimosti approksimatsii Pade ortogonalnykh razlozhenii”, Teoriya chisel, algebra, matematicheskii analiz i ikh prilozheniya, Sb. statei, Tr. MIAN, 200, Nauka, M., 1991, 136–146
[8] A. A. Gonchar, E. A. Rakhmanov, S. P. Suetin, “Approksimatsii Pade–Chebysheva dlya mnogoznachnykh analiticheskikh funktsii, variatsiya ravnovesnoi energii i $S$-svoistvo statsionarnykh kompaktov”, UMN, 66:6(402) (2011), 3–36 | DOI | MR | Zbl
[9] O. L. Ibryaeva, “Dostatochnoe uslovie edinstvennosti lineinoi approksimatsii Pade–Chebysheva”, Izv. Chelyabinskogo nauchnogo tsentra UrO RAN, 17:4 (2002), 1–5 | MR
[10] N. R. Ikonomov, S. P. Suetin, “Skalyarnaya zadacha ravnovesiya i predelnoe raspredelenie nulei polinomov Ermita–Pade II tipa”, Sovremennye problemy matematicheskoi i teoreticheskoi fiziki, Sb. statei, Trudy MIAN, 309, MIAN, M., 2020, 174–197 | DOI | MR
[11] N. R. Ikonomov, S. P. Suetin, “Algoritm Viskovatova dlya polinomov Ermita–Pade”, Matem. sb., 212:9 (2021), 94–118 | DOI | MR | Zbl
[12] A. V. Komlov, R. V. Palvelev, S. P. Suetin, E. M. Chirka, “Approksimatsii Ermita–Pade dlya meromorfnykh funktsii na kompaktnoi rimanovoi poverkhnosti”, UMN, 72:4(436) (2017), 95–130 | DOI | MR
[13] A. Martines-Finkelshtein, E. A. Rakhmanov, S. P. Suetin, “Variatsiya ravnovesnoi mery i $S$-svoistvo statsionarnogo kompakta”, UMN, 66:1(397) (2011), 183–184 | DOI | MR | Zbl
[14] Nikishin E. M., Sorokin V. N., Ratsionalnye approksimatsii i ortogonalnost, Nauka, M., 1988
[15] E. A. Perevoznikova, E. A. Rakhmanov, Variatsiya ravnovesnoi energii i $S$-svoistvo kompaktov minimalnoi emkosti, Preprint, M., 1994
[16] E. A. Rakhmanov, S. P. Suetin, “Raspredelenie nulei polinomov Ermita–Pade dlya pary funktsii, obrazuyuschei sistemu Nikishina”, Matem. sb., 204:9 (2013), 115–160 | DOI | MR | Zbl
[17] E. A. Rakhmanov, “Raspredelenie nulei polinomov Ermita–Pade v sluchae Anzhelesko”, UMN, 73:3(441) (2018), 89–156 | DOI | MR | Zbl
[18] A. P. Starovoitov, N. V. Ryabchenko, A. A. Drapeza, “Kriterii suschestvovaniya i edinstvennosti poliortogonalnykh mnogochlenov pervogo tipa”, PFMT, 2020, no. 3(44), 82–86
[19] S. P. Suetin, “O teoreme Montessu de Bolora dlya ratsionalnykh approksimatsii ortogonalnykh razlozhenii”, Matem. sb., 114(156):3 (1981), 451–464 | MR | Zbl
[20] S. P. Suetin, “O suschestvovanii nelineinykh approksimatsii Pade–Chebysheva dlya analiticheskikh funktsii”, Matem. zametki, 86:2 (2009), 290–303 | DOI | Zbl
[21] S. P. Suetin, “Raspredelenie nulei polinomov Pade i analiticheskoe prodolzhenie”, UMN, 70:5(425) (2015), 121–174 | DOI | MR | Zbl
[22] S. P. Suetin, “O raspredelenii nulei polinomov Ermita–Pade dlya kompleksnoi sistemy Nikishina”, UMN, 73:2(440) (2018), 183–184 | DOI | MR | Zbl
[23] S. P. Suetin, “Ob odnom primere sistemy Nikishina”, Matem. zametki, 104:6(440) (2018), 918–929 | DOI | Zbl
[24] S. P. Suetin, “O novom podkhode k zadache o raspredelenii nulei polinomov Ermita–Pade dlya sistemy Nikishina”, Kompleksnyi analiz, matematicheskaya fizika i prilozheniya, Sb. statei, Trudy MIAN, 301, Nauka, M., 2018, 259–275 | DOI
[25] S. P. Suetin, “Pryamoe dokazatelstvo teoremy Shtalya dlya nekotorogo klassa algebraicheskikh funktsii”, Matem. sb., 213:11 (2022), 102–117 | DOI | MR
[26] E. M. Chirka, “Potentsialy na kompaktnoi rimanovoi poverkhnosti”, Kompleksnyi analiz, matematicheskaya fizika i prilozheniya, Sb. statei, Trudy MIAN, 301, Nauka, M., 2018, 287–319 | DOI
[27] E. M. Chirka, “Emkosti na kompaktnoi rimanovoi poverkhnosti”, Analiz i matematicheskaya fizika, Sb. statei, Trudy MIAN, 311, MIAN, M., 2020, 41–83 | DOI
[28] A. I. Aptekarev, A. B. J. Kuijlaars, W. Van Assche, “Asymptotics of Hermite–Padé rational approximants for two analytic functions with separated pairs of branch points (case of genus 0)”, IMRP, 2007, no. 4, rpm007 | MR
[29] J. L. Aurentz, L. N. Trefethen, “Chopping a Chebyshev series”, ACM Trans. Math. Software, 43:4 (2017), 33, 21 pp. | DOI | MR | Zbl
[30] G. A., Jr. Baker, P. Graves-Morris, Padé approximants, Encyclopedia of Mathematics and its Applications, 59, Cambridge Univ. Press, Cambridge, 1996 | MR
[31] J. P. Boyd, Chebyshev and Fourier spectral methods, Dover Publ., Inc, NY, 2001 | MR | Zbl
[32] J. S. R. Chisholm, A. K. Common, “Generalisations of Padé approximation for Chebyshev and Fourier series”, E. B. Christoffel (Aachen/Monschau, 1979), Birkhäuser, Basel–Boston, Mass., 1981, 212–231 | DOI | MR
[33] C. W. Clenshaw, K. Lord, “Rational approximations from Chebyshev series”, Studies in numerical analysis, Academic Press, London, 1974, 95–113 | MR
[34] J. Fleischer, “Nonlinear Padé approximants for Legendre series”, J. Math. Phys., 14:2 (1973), 246–248 | DOI | MR | Zbl
[35] A. A. Gonchar, E. A. Rakhmanov, S. P. Suetin, “On the rate of convergence of Padé approximants of orthogonal expansions”, Progress in approximation theory (Tampa, FL, 1990), Springer Ser. Comput. Math., 19, Springer, New York, 1992, 169–190 | DOI | MR | Zbl
[36] P. Henrici, “An algorithm for analytic continuation”, SIAM J. Numer. Anal., 3:1 (1966), 67–78 | DOI | MR | Zbl
[37] J. T., Jr. Holdeman, “A method for the approximation of functions defined by formal series expansions in orthogonal polynomials”, Math. Comp., 23:106 (1969), 275–287 | DOI | MR | Zbl
[38] N. R. Ikonomov, S. P. Suetin, HEPAComp: Hermite–Padé approximant computation, Version 1.3/15.10.2020, , 2020 http://justmathbg.info/hepacomp.html
[39] A. Martínez-Finkelshtein, E. A. Rakhmanov, S. P. Suetin, “Asymptotics of type I Hermite–Padé polynomials for semiclassical functions”, Modern trends in constructive function theory, Contemp. Math., 661, AMS, Providence, RI, 2016, 199–228 | DOI | MR | Zbl
[40] A. Martinez-Finkelshtein, E. A. Rakhmanov, Do orthogonal polynomials dream of symmetric curves?, Found. Comput. Math., 16:6 (2016), 1697–1736 | DOI | MR | Zbl
[41] J. Nuttall, “Asymptotics of diagonal Hermite–Padé polynomials”, J. Approx. Theory, 42:4 (1984), 299–386 | DOI | MR | Zbl
[42] E. A. Rakhmanov, Recent advances in orthogonal polynomials, special functions and their applications, Contemp. Math., 578, AMS, Providence, RI, 2012, Orthogonal polynomials and $S$-curves | MR
[43] H. Stahl, “Asymptotics of Hermite–Padé polynomials and related convergence results. A summary of results”, Nonlinear numerical methods and rational approximation (Wilrijk, 1987), Math. Appl., 43, Reidel, Dordrecht, 1988, 23–53 | MR | Zbl
[44] H. Stahl, “The convergence of Padé approximants to functions with branch points”, J. Approx. Theory, 91:2 (1997), 139–204 | DOI | MR | Zbl
[45] H. R. Stahl, Sets of minimal capacity and extremal domains, arXiv: 1205.3811
[46] G. Szegő, Orthogonal polynomials, American Mathematical Society Colloquium Publications, XXIII, AMS, Providence, R.I., 1975 | Zbl
[47] L. N. Trefethen, Approximation theory and approximation practice, SIAM, Philadelphia, PA, 2013 | MR | Zbl
[48] L. N. Trefethen, “Quantifying the ill-conditioning of analytic continuation”, BIT, 60:4 (2020), 901–915 | DOI | MR | Zbl