The Gonchar--Chudnovskies conjecture and a functional analogue of the Thue--Siegel--Roth theorem
Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 83 (2022) no. 2, pp. 297-318.

Voir la notice de l'article provenant de la source Math-Net.Ru

This article examines the Gonchar–Chudnovskies conjecture about the limited size of blocks of diagonal Padé approximants of algebraic functions. The statement of this conjecture is a functional analogue of the famous Thue–Siegel–Roth theorem. For algebraic functions with branch points in general position, we will show the validity of this conjecture as a consequence of recent results on the uniform convergence of the continued fraction for an analytic function with branch points. We will also discuss related problems on estimating the number of “spurious” (“wandering”) poles for rational approximations (Stahl’s conjecture), and on the appearance and disappearance of defects (Froissart doublets).
@article{MMO_2022_83_2_a4,
     author = {A. I. Aptekarev and M. Yattselev},
     title = {The {Gonchar--Chudnovskies} conjecture and a functional analogue of the {Thue--Siegel--Roth} theorem},
     journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {297--318},
     publisher = {mathdoc},
     volume = {83},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MMO_2022_83_2_a4/}
}
TY  - JOUR
AU  - A. I. Aptekarev
AU  - M. Yattselev
TI  - The Gonchar--Chudnovskies conjecture and a functional analogue of the Thue--Siegel--Roth theorem
JO  - Trudy Moskovskogo matematičeskogo obŝestva
PY  - 2022
SP  - 297
EP  - 318
VL  - 83
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MMO_2022_83_2_a4/
LA  - ru
ID  - MMO_2022_83_2_a4
ER  - 
%0 Journal Article
%A A. I. Aptekarev
%A M. Yattselev
%T The Gonchar--Chudnovskies conjecture and a functional analogue of the Thue--Siegel--Roth theorem
%J Trudy Moskovskogo matematičeskogo obŝestva
%D 2022
%P 297-318
%V 83
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MMO_2022_83_2_a4/
%G ru
%F MMO_2022_83_2_a4
A. I. Aptekarev; M. Yattselev. The Gonchar--Chudnovskies conjecture and a functional analogue of the Thue--Siegel--Roth theorem. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 83 (2022) no. 2, pp. 297-318. http://geodesic.mathdoc.fr/item/MMO_2022_83_2_a4/

[1] Aptekarev A. I., “Tochnye konstanty ratsionalnykh approksimatsii analiticheskikh funktsii”, Matem. sb., 193:1 (2002), 3–72 | DOI | MR | Zbl

[2] Aptekarev A. I., Buslaev V. I., Martines-Finkelshtein A., Suetin S. P., “Approksimatsii Pade, nepreryvnye drobi i ortogonalnye mnogochleny”, UMN, 66:6(402) (2011), 37–122 | DOI | MR | Zbl

[3] Aptekarev A. I., Klimov A. V., Razlozhenie kornya kubicheskogo iz dvukh v nepreryvnuyu drob, Neopublikovannaya rukopis, 1975

[4] Aptekarev A. I., Yattselev M. L., “Priblizheniya algebraicheskikh funktsii ratsionalnymi — funktsionalnye analogi diofantovykh approksimatsii”, Preprinty Instituta prikladnoi matematiki im. M. V. Keldysha RAN, 2016, 84

[5] Bryuno A. D., “Razlozhenie algebraicheskikh chisel v tsepnye drobi”, Zh. vychisl. matem. i matem. fiz., 4:2 (1964), 211–221 | Zbl

[6] Geronimus Ya. L., “O nekotorykh uravneniyakh v konechnykh raznostyakh i sootvetstvuyuschikh sistemakh ortogonalnykh mnogochlenov”, Zapiski Kharkovskogo matem. ob-va, 25 (1957), 87–100

[7] Gonchar A. A., “5.6. Ratsionalnaya approksimatsiya analiticheskikh funktsii”, Issledovaniya po lineinym operatoram i teorii funktsii, Zap. nauchn. sem. LOMI, 81, Nauka, L., 1978, 182–185

[8] Nikishin E. M., Sorokin V. N., Ratsionalnye approksimatsii i ortogonalnost, Nauka, M., 1988

[9] Perevoznikova E. A., Rakhmanov E. A., Variatsiya ravnovesnoi energii i $S$" svoistvo kompakta minimalnoi emkosti, Neopublikovannaya rukopis, 1994

[10] Suetin S. P., “Raspredelenie nulei polinomov Pade i analiticheskoe prodolzhenie”, UMN, 70:5(425) (2015), 121–174 | DOI | MR | Zbl

[11] Feldman N. I., Priblizheniya algebraicheskikh chisel, Izd-vo MGU, M., 1981

[12] Aptekarev A. I., Yattselev M. L., “Padé approximants for functions with branch points — strong asymptotics of Nuttall–Stahl polynomials”, Acta Math., 215:2 (2015), 217–280 | DOI | MR | Zbl

[13] Barhoumi A., Yattselev M. L., “Asymptotics of polynomials orthogonal on a cross with a Jacobi-type weight”, Complex Anal. Oper. Theory, 14:1 (2020), 9 | DOI | MR | Zbl

[14] Chudnovsky D. V., Chudnovsky G. V., “The Wronskian formalism for linear differential equations and Padé approximations”, Adv. in Math., 53:1 (1984) | DOI | MR

[15] Chudnovsky G. V., “On the method of Thue–Siegel”, Ann. of Math. (2), 117:2(1983) (1983), 325–382 | DOI | MR | Zbl

[16] Deift P., Kriecherbauer T., McLaughlin K. T.-R., Venakides S., Zhou X., “Uniform asymptotics for polynomials orthogonal with respect to varying exponential weights and applications to universality questions in random matrix theory”, Comm. Pure Appl. Math., 52:11 (1999), 1335–1425 | 3.0.CO;2-1 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[17] Froissart M., “Approximation de Padé application à la physique des particules élémentaires”, Recherche Coopérative sur Programme n$^\circ$25, 9 (1969), 1–13

[18] Kolchin E. R., “Rational approximation to solutions of algebraic differential equations”, Proc. Amer. Math. Soc., 10 (1959), 238–244 | DOI | MR | Zbl

[19] Lang S., Trotter H., “Continued fractions for some algebraic numbers”, J. Reine Angew. Math., 255 (1972), 112–134 | MR | Zbl

[20] “Martínez-Finkelshtein A., Rakhmanov E. A.”, Comm. Math. Phys., 302:1 (2011), 53–111 | DOI | MR | Zbl

[21] Nuttall J., “The convergence of Padé approximants to functions with branch points”, Padé and rational {a}pproximation. New York: Academic Press, 1977, 101–109 | MR | Zbl

[22] Nuttall J., “Hermite–Padé approximants to functions meromorfic on a Riemann surface”, J. Approx. Theory, 32 (1981), 233–240 | DOI | MR | Zbl

[23] Schmidt W. M., Diophantine approximation, Lecture Notes in Math., 785, Springer, Berlin, 1980 | MR | Zbl

[24] Stahl H., “Extremal domains associated with an analytic function. I; II”, Complex Variables Theory Appl., 4:4 (1985), 311–324 ; 325–338 | DOI | MR | Zbl | Zbl

[25] Stahl H., “The structure of extremal domains associated with an analytic function”, Complex Variables Theory Appl., 4:4 (1985), 339–354 | DOI | MR | Zbl

[26] Stahl H., “Orthogonal polynomials with complex-valued weight function. I; II”, Constr. Approx., 2:3 (1986), 225–240 ; 241–251 | DOI | MR | Zbl | Zbl

[27] Stahl H., “Conjectures around the Baker–Gammel–Wills conjecture”, Constr. Approx., 13:2 (1997), 287–292 | MR | Zbl

[28] Szegő G., Orthogonal polynomials, AMS Colloq. Publ., 23, AMS, Providence, RI, 1975 | MR | Zbl

[29] Uchiyama S., “Rational approximations to algebraic functions”, J. Fac. Sci. Hokkaido Univ. Ser. I, 15 (1961), 173–192 | MR | Zbl