Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MMO_2022_83_2_a4, author = {A. I. Aptekarev and M. Yattselev}, title = {The {Gonchar--Chudnovskies} conjecture and a functional analogue of the {Thue--Siegel--Roth} theorem}, journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva}, pages = {297--318}, publisher = {mathdoc}, volume = {83}, number = {2}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MMO_2022_83_2_a4/} }
TY - JOUR AU - A. I. Aptekarev AU - M. Yattselev TI - The Gonchar--Chudnovskies conjecture and a functional analogue of the Thue--Siegel--Roth theorem JO - Trudy Moskovskogo matematičeskogo obŝestva PY - 2022 SP - 297 EP - 318 VL - 83 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MMO_2022_83_2_a4/ LA - ru ID - MMO_2022_83_2_a4 ER -
%0 Journal Article %A A. I. Aptekarev %A M. Yattselev %T The Gonchar--Chudnovskies conjecture and a functional analogue of the Thue--Siegel--Roth theorem %J Trudy Moskovskogo matematičeskogo obŝestva %D 2022 %P 297-318 %V 83 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MMO_2022_83_2_a4/ %G ru %F MMO_2022_83_2_a4
A. I. Aptekarev; M. Yattselev. The Gonchar--Chudnovskies conjecture and a functional analogue of the Thue--Siegel--Roth theorem. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 83 (2022) no. 2, pp. 297-318. http://geodesic.mathdoc.fr/item/MMO_2022_83_2_a4/
[1] Aptekarev A. I., “Tochnye konstanty ratsionalnykh approksimatsii analiticheskikh funktsii”, Matem. sb., 193:1 (2002), 3–72 | DOI | MR | Zbl
[2] Aptekarev A. I., Buslaev V. I., Martines-Finkelshtein A., Suetin S. P., “Approksimatsii Pade, nepreryvnye drobi i ortogonalnye mnogochleny”, UMN, 66:6(402) (2011), 37–122 | DOI | MR | Zbl
[3] Aptekarev A. I., Klimov A. V., Razlozhenie kornya kubicheskogo iz dvukh v nepreryvnuyu drob, Neopublikovannaya rukopis, 1975
[4] Aptekarev A. I., Yattselev M. L., “Priblizheniya algebraicheskikh funktsii ratsionalnymi — funktsionalnye analogi diofantovykh approksimatsii”, Preprinty Instituta prikladnoi matematiki im. M. V. Keldysha RAN, 2016, 84
[5] Bryuno A. D., “Razlozhenie algebraicheskikh chisel v tsepnye drobi”, Zh. vychisl. matem. i matem. fiz., 4:2 (1964), 211–221 | Zbl
[6] Geronimus Ya. L., “O nekotorykh uravneniyakh v konechnykh raznostyakh i sootvetstvuyuschikh sistemakh ortogonalnykh mnogochlenov”, Zapiski Kharkovskogo matem. ob-va, 25 (1957), 87–100
[7] Gonchar A. A., “5.6. Ratsionalnaya approksimatsiya analiticheskikh funktsii”, Issledovaniya po lineinym operatoram i teorii funktsii, Zap. nauchn. sem. LOMI, 81, Nauka, L., 1978, 182–185
[8] Nikishin E. M., Sorokin V. N., Ratsionalnye approksimatsii i ortogonalnost, Nauka, M., 1988
[9] Perevoznikova E. A., Rakhmanov E. A., Variatsiya ravnovesnoi energii i $S$" svoistvo kompakta minimalnoi emkosti, Neopublikovannaya rukopis, 1994
[10] Suetin S. P., “Raspredelenie nulei polinomov Pade i analiticheskoe prodolzhenie”, UMN, 70:5(425) (2015), 121–174 | DOI | MR | Zbl
[11] Feldman N. I., Priblizheniya algebraicheskikh chisel, Izd-vo MGU, M., 1981
[12] Aptekarev A. I., Yattselev M. L., “Padé approximants for functions with branch points — strong asymptotics of Nuttall–Stahl polynomials”, Acta Math., 215:2 (2015), 217–280 | DOI | MR | Zbl
[13] Barhoumi A., Yattselev M. L., “Asymptotics of polynomials orthogonal on a cross with a Jacobi-type weight”, Complex Anal. Oper. Theory, 14:1 (2020), 9 | DOI | MR | Zbl
[14] Chudnovsky D. V., Chudnovsky G. V., “The Wronskian formalism for linear differential equations and Padé approximations”, Adv. in Math., 53:1 (1984) | DOI | MR
[15] Chudnovsky G. V., “On the method of Thue–Siegel”, Ann. of Math. (2), 117:2(1983) (1983), 325–382 | DOI | MR | Zbl
[16] Deift P., Kriecherbauer T., McLaughlin K. T.-R., Venakides S., Zhou X., “Uniform asymptotics for polynomials orthogonal with respect to varying exponential weights and applications to universality questions in random matrix theory”, Comm. Pure Appl. Math., 52:11 (1999), 1335–1425 | 3.0.CO;2-1 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[17] Froissart M., “Approximation de Padé application à la physique des particules élémentaires”, Recherche Coopérative sur Programme n$^\circ$25, 9 (1969), 1–13
[18] Kolchin E. R., “Rational approximation to solutions of algebraic differential equations”, Proc. Amer. Math. Soc., 10 (1959), 238–244 | DOI | MR | Zbl
[19] Lang S., Trotter H., “Continued fractions for some algebraic numbers”, J. Reine Angew. Math., 255 (1972), 112–134 | MR | Zbl
[20] “Martínez-Finkelshtein A., Rakhmanov E. A.”, Comm. Math. Phys., 302:1 (2011), 53–111 | DOI | MR | Zbl
[21] Nuttall J., “The convergence of Padé approximants to functions with branch points”, Padé and rational {a}pproximation. New York: Academic Press, 1977, 101–109 | MR | Zbl
[22] Nuttall J., “Hermite–Padé approximants to functions meromorfic on a Riemann surface”, J. Approx. Theory, 32 (1981), 233–240 | DOI | MR | Zbl
[23] Schmidt W. M., Diophantine approximation, Lecture Notes in Math., 785, Springer, Berlin, 1980 | MR | Zbl
[24] Stahl H., “Extremal domains associated with an analytic function. I; II”, Complex Variables Theory Appl., 4:4 (1985), 311–324 ; 325–338 | DOI | MR | Zbl | Zbl
[25] Stahl H., “The structure of extremal domains associated with an analytic function”, Complex Variables Theory Appl., 4:4 (1985), 339–354 | DOI | MR | Zbl
[26] Stahl H., “Orthogonal polynomials with complex-valued weight function. I; II”, Constr. Approx., 2:3 (1986), 225–240 ; 241–251 | DOI | MR | Zbl | Zbl
[27] Stahl H., “Conjectures around the Baker–Gammel–Wills conjecture”, Constr. Approx., 13:2 (1997), 287–292 | MR | Zbl
[28] Szegő G., Orthogonal polynomials, AMS Colloq. Publ., 23, AMS, Providence, RI, 1975 | MR | Zbl
[29] Uchiyama S., “Rational approximations to algebraic functions”, J. Fac. Sci. Hokkaido Univ. Ser. I, 15 (1961), 173–192 | MR | Zbl