Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MMO_2022_83_1_a5, author = {A. V. Silantyev}, title = {Quantum representation theory and {Manin} matrices {I:} {The} finite-dimensional case}, journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva}, pages = {87--179}, publisher = {mathdoc}, volume = {83}, number = {1}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MMO_2022_83_1_a5/} }
TY - JOUR AU - A. V. Silantyev TI - Quantum representation theory and Manin matrices I: The finite-dimensional case JO - Trudy Moskovskogo matematičeskogo obŝestva PY - 2022 SP - 87 EP - 179 VL - 83 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MMO_2022_83_1_a5/ LA - ru ID - MMO_2022_83_1_a5 ER -
A. V. Silantyev. Quantum representation theory and Manin matrices I: The finite-dimensional case. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 83 (2022) no. 1, pp. 87-179. http://geodesic.mathdoc.fr/item/MMO_2022_83_1_a5/
[1] Drinfeld V. G., “Kvantovye gruppy”, Zap. nauchn. sem. LOMI, 155, 1986, 18–49 | Zbl
[2] Kassel K., Kvantovye gruppy, B-ka matematika, 5, Fazis, M., 1999
[3] Maklein S., Kategorii dlya rabotayuschego matematika, Fizmatlit, M., 2004
[4] Manin Yu. I., Lektsii po algebraicheskoi geometrii, v. 1, Affinnye skhemy, MGU, M., 1970 ; Манин Ю. И., Введение в теорию схем и квантовые группы, МЦНМО, М., 2020, 8–109 | MR
[5] Molev A. I., Operatory Sugavary dlya klassicheskikh algebr Li, MTsNMO, M., 2018 (elektronnoe izdanie) https://www.mccme.ru/free-books/Molev-Sugavara.pdf
[6] Reshetikhin N. Yu., Takhtadzhyan L. A., Faddeev L. D., “Kvantovanie grupp Li i algebr Li”, Algebra i analiz, 1:1 (1989), 178–206
[7] Talalaev D. V., “Kvantovaya sistema Godena”, Funkts. analiz i ego pril., 40:1 (2006), 86–91, arXiv: hep-th/0404153 | DOI | MR | Zbl
[8] Khartskhorn R., Algebraicheskaya geometriya, Mir, M., 1981
[9] Arnaudon D., Molev A., Ragoucy E., “On the $R$-matrix realization of Yangians and their representations”, Ann. H. Poincaré, 7 (2006), 1269–1325, arXiv: math/0511481 | DOI | MR | Zbl
[10] Borceux F., Handbook of categorical algebra, v. 2, Encyclopedia of Mathematics and its Applications, 51, Categories and structures, Cambridge University Press, Cambridge, 1994 | MR | Zbl
[11] Chervov A., Falqui G., “Manin matrices and Talalaev's formula”, J. Phys. A, 41:19 (2009), 194006, arXiv: 0711.2236 | DOI | MR
[12] Chervov A. V., Molev A. I., “On higher-order Sugawara operators”, IMRN, 2009:9 (2009), 1612–1635, arXiv: 0808.1947 | MR | Zbl
[13] “Chervov A., Falqui G., Rubtsov V.”, Adv. in Appl. Math., 43:3 (2009), 239–315, arXiv: 0901.0235 | DOI | MR | Zbl
[14] Chervov A., Falqui G., Rubtsov V., Silantyev A., “Algebraic properties of Manin matrices. II: $q$-analogues and integrable systems”, Adv. in Appl. Math., 60 (2014), 25–89, arXiv: 1210.3529 | DOI | MR | Zbl
[15] Deligne P., Morgan J. W., “Notes on supersymmetry (following Joseph Bernstein)”, Quantum fields and strings: a course for mathematicians, v. 1, 2, AMS, Princeton, NJ, 1996/1997, 41–97 | MR
[16] Eckmann B., Hilton P., “Structure maps in group theory”, Fund. Math., 50 (1961), 207–221 | DOI | MR | Zbl
[17] Foata D., Han G.-N., “A new proof of the Garoufalidis"– Lê"– Zeilberger quantum MacMahon master theorem”, J. Algebra, 307:1 (2007), 424–431, arXiv: math.CO/0603464 | DOI | MR | Zbl
[18] Foata D., Han G.-N., “A basis for the right quantum algebra and the "$1=q$" principle”, J. Algebraic Combin., 27:2 (2008), 163–172, arXiv: math.CO/0603463 | DOI | MR | Zbl
[19] Fulton W., Algebraic curves. An introduction to algebraic geometry, Addison-Wesley Publ. Company, Redwood City, CA, 1989 (first published in 1969; revised in 2008) http://www.math.lsa.umich.edu/w̃fulton/CurveBook.pdf | MR | Zbl
[20] Garoufalidis S., Lê T. T. Q., Zeilberger D., “The quantum MacMahon master theorem”, Proc. Nat. Acad. of Sci., 103:38 (2006), 13928–13931, arXiv: math.QA/0303319 | DOI | MR | Zbl
[21] Isaev A., Ogievetsky O., “Half-quantum linear algebra”, Symmetries and groups in contemporary physics, Nankai Ser. Pure Appl. Math. Theoret. Phys., 11, World Sci. Publ., Hackensack, NJ, 2013, 479–486, arXiv: 1303.3991 | MR | Zbl
[22] Khoroshkin S. M., “Central extension of the Yangian double”, Algèbre non commutative, groupes quantiques et invariants (Reims, 1995), Sémin. Congr., 2, SMF, Paris, 1997, 119–135 | MR
[23] Lang S., Differential and Riemannian manifolds, Graduate Texts in Math., 160, Springer-Verlag, Berlin–New York, 1995 | DOI | MR | Zbl
[24] Manin Yu. I., “Some remarks on Koszul algebras and quantum groups”, Ann. Inst. Fourier (Grenoble), 37:4 (1987), 191–205 | DOI | MR | Zbl
[25] Manin Yu. I., Quantum groups and noncommutative geometry, Univ. Montréal, Centre de Recherches Mathématiques, Montreal, QC, 1988 | MR
[26] Manin Yu. I., “Multiparametric quantum deformation of the general linear supergroup”, Comm. Math. Phys., 123:1 (1989), 163–175 | DOI | MR | Zbl
[27] Manin Yu. I., Topics in non-commutative geometry, Porter Lectures, 3, Princeton Univ. Press, Princeton, NJ, 1991 | MR
[28] Manin Yu. I., “Notes on quantum groups and quantum de Rham complexes”, TMF, 92:3 (1992), 425–450 | MR | Zbl
[29] Molev A. I., Ragoucy E., “The MacMahon master theorem for right quantum superalgebras and higher Sugawara operators for $\widehat{\mathfrak{g}l}_{m|n}$”, Mosc. Math. J., 14:1 (2014), 83–119, arXiv: 0911.3447 | DOI | MR | Zbl
[30] Pareigis B., “A non-commutative non-cocommutative Hopf algebra in “nature””, J. Algebra, 70:2 (1981), 356–374 | DOI | MR | Zbl
[31] Algebraic geometry: an introduction, Springer-Verlag, London, 2008 | MR | MR | Zbl
[32] Porst H.-E., “On categories of monoids, comonoids, and bimonoids”, Quaest. Math., 31:2 (2008), 127–139 | DOI | MR | Zbl
[33] Rubtsov V., Silantyev A., Talalaev D., “Manin matrices, quantum elliptic commutative families and characteristic polynomial of elliptic Gaudin model”, SIGMA, 5 (2009), 110, 1–22, arXiv: 0908.4064 | MR
[34] Silantyev A., “Manin matrices for quadratic algebras”, SIGMA, 17 (2021), 066, 1–81, arXiv: 2009.05993 | MR