Quantum representation theory and Manin matrices I: The finite-dimensional case
Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 83 (2022) no. 1, pp. 87-179
Voir la notice de l'article provenant de la source Math-Net.Ru
We construct a theory that describes a quantum (non-commutative) analogue of representations within the framework of “non-commutative linear geometry” set out in the work of Manin [Quantum groups and noncommutative geometry, Univ. Montréal, Centre de Recherches Mathématiques, Montréal, QC, 1988]. For this purpose, the concept of an internal
$\mathrm{hom}$-functor is generalized to the case of parameterized adjunctions, and we construct a general approach to representations of monoids for a symmetric monoidal category with a parameter subcategory. A quantum theory of representations is then obtained by applying this approach to the monoidal category of a certain class of graded algebras with the Manin product, where the parameterizing subcategory consists of connected finitely generated quadratic algebras. We formulate this theory in the language of Manin matrices. We also obtain quantum analogues of the direct sum and tensor product of representations. Finally, we give some examples of quantum representations.
@article{MMO_2022_83_1_a5,
author = {A. V. Silantyev},
title = {Quantum representation theory and {Manin} matrices {I:} {The} finite-dimensional case},
journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva},
pages = {87--179},
publisher = {mathdoc},
volume = {83},
number = {1},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MMO_2022_83_1_a5/}
}
TY - JOUR AU - A. V. Silantyev TI - Quantum representation theory and Manin matrices I: The finite-dimensional case JO - Trudy Moskovskogo matematičeskogo obŝestva PY - 2022 SP - 87 EP - 179 VL - 83 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MMO_2022_83_1_a5/ LA - ru ID - MMO_2022_83_1_a5 ER -
A. V. Silantyev. Quantum representation theory and Manin matrices I: The finite-dimensional case. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 83 (2022) no. 1, pp. 87-179. http://geodesic.mathdoc.fr/item/MMO_2022_83_1_a5/