Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MMO_2022_83_1_a4, author = {Z. A. Kasumov and N. R. Ahmedzade}, title = {On some properties of a {Riesz} potential in {grand-Lebesgue} and {grand-Sobolev} spaces}, journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva}, pages = {77--85}, publisher = {mathdoc}, volume = {83}, number = {1}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MMO_2022_83_1_a4/} }
TY - JOUR AU - Z. A. Kasumov AU - N. R. Ahmedzade TI - On some properties of a Riesz potential in grand-Lebesgue and grand-Sobolev spaces JO - Trudy Moskovskogo matematičeskogo obŝestva PY - 2022 SP - 77 EP - 85 VL - 83 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MMO_2022_83_1_a4/ LA - ru ID - MMO_2022_83_1_a4 ER -
%0 Journal Article %A Z. A. Kasumov %A N. R. Ahmedzade %T On some properties of a Riesz potential in grand-Lebesgue and grand-Sobolev spaces %J Trudy Moskovskogo matematičeskogo obŝestva %D 2022 %P 77-85 %V 83 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MMO_2022_83_1_a4/ %G ru %F MMO_2022_83_1_a4
Z. A. Kasumov; N. R. Ahmedzade. On some properties of a Riesz potential in grand-Lebesgue and grand-Sobolev spaces. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 83 (2022) no. 1, pp. 77-85. http://geodesic.mathdoc.fr/item/MMO_2022_83_1_a4/
[1] B. T. Bilalov, “O bazisnosti vozmuschennoi sistemy eksponent v prostranstvakh tipa Morri”, Sib. matem. zhurn., 60:2 (2019), 323–350 | MR | Zbl
[2] Bilalov B. T., Guseinov Z. G., “Kriterii bazisnosti vozmuschennoi sistemy eksponent v lebegovykh prostranstvakh s peremennym pokazatelem summiruemosti”, DAN, 436:5 (2011), 586–589 | Zbl
[3] Mikhlin S. G., Lineinye uravneniya v chastnykh proizvodnykh, Vysshaya shkola, M., 1977
[4] Adams D. R., Morrey spaces, Springer, Switzerland, 2016 | MR
[5] N. Ahmedzade, Z. Kasumov, “On the solvability of the Dirichlet problem for the Laplace equation with the boundary value in grand-Lebesgue space. Nakhchivan State University. Scientific works”, The series of Physical, mathematical and technical sciences, 2020, no. 5(106), 62–69 | MR
[6] Bilalov B., Gasymov T., Guliyeva A., “On the solvability of the Riemann boundary value problem in Morrey"– Hardy classes”, Turk. J. Math., 40 (2016), 1085–1101 | DOI | MR | Zbl
[7] Bilalov B. T., Guseynov Z. G., “Basicity of a system of exponents with a piecewise linear phase in variable spaces”, Mediterr. J. Math., 9:3 (2012), 487–498 | DOI | MR | Zbl
[8] Bilalov B. T., Huseynli A. A., El-Shabrawy S. R., “Basis properties of trigonometric systems in weighted Morrey spaces”, Azerb. J. Math., 9:2 (2019), 200–226 | MR
[9] Bilalov B. T., Quliyeva A. A., “On basicity of exponential systems in Morrey-type spaces”, Internat. J. Math., 25:6 (2014), 1450054 | DOI | MR | Zbl
[10] Bilalov B. T., Sadigova S. R., “Frame properties of a part of an exponential system with degenerate coefficients in Hardy classes”, Georgian Math. J., 24:3 (2017), 325–338 | DOI | MR | Zbl
[11] Bilalov B. T., Sadigova S. R., “On solvability in the small of higher order elliptic equations in grand-Sobolev spaces”, Complex Var. Elliptic Eq., 66:12 (2021), 2117–2130 | DOI | MR | Zbl
[12] Bilalov B., Seyidova F., “Basicity of a system of exponents with a piecewise linear phase in Morrey-type spaces”, Turk. J. Math., 43:4 (2019), 1850–1866 | DOI | MR | Zbl
[13] Caso L., D'Ambrosio R., Softova L., “Generalized Morrey spaces over unbounded domains”, Azerb. J. Math., 10:1 (2020), 193–208 | MR | Zbl
[14] Castillo R. E., Rafeiro H., An introductory course in Lebesgue spaces, CMS Books in Mathematics, Springer, Cham, 2016 | DOI | MR | Zbl
[15] Chen Y., “Regularity of the solution to the Dirichlet problem in Morrey spaces”, J. Part. Diff. Eq., 15:2 (2002), 37–46 | MR | Zbl
[16] Cruz-Uribe D. V., Fiorenza A., Variable Lebesgue spaces, Applied and Numerical Harmonic Analysis, Birkhäuser/Springer, Heidelberg, 2013 | DOI | MR | Zbl
[17] Di Fazio G., Palagachev D. K., Ragusa M. A., “Global Morrey regularity of strong solutions to the Dirichlet problem for elliptic equations with discontinuous coefficients”, J. Funct. Anal., 166:2 (1999), 179–196 | DOI | MR | Zbl
[18] Fazio G. D., Ragusa M. A., “Interior estimates in Morrey spaces for strong solutions to nondivergence form equations with discontinuous coefficients”, J. Funct. Anal., 112 (1993), 241–256 | DOI | MR | Zbl
[19] P. Harjulehto, P. Hästö, Orlicz spaces and generalized Orlicz spaces, Lecture Notes in Math., 2236, Springer, Cham, 2019 | DOI | MR | Zbl
[20] Israfilov D. M., Tozman N. P., “Approximation in Morrey"– Smirnov classes”, Azerb. J. Math., 1:1 (2011), 99–113 | MR | Zbl
[21] Kokilashvili V., Meskhi A., Rafeiro H., Samko S., Integral operators in non-standard function spaces, v. 1, Oper. Theory Adv. Appl., 248, Variable exponent Lebesgue and amalgam spaces, Birkhäuser/Springer, Cham, 2016 | MR | Zbl
[22] Kokilashvili V., Meskhi A., Rafeiro H., Samko S., Integral operators in non-standard function spaces, v. 2, Oper. Theory Adv. Appl., 229, Variable exponent Hölder, Morrey"– Campanato and grand spaces, Birkhäuser/Springer, Cham, 2016 | MR
[23] Palagachev D. K., Ragusa M. A., Softova L. G., “Regular oblique derivative problem in Morrey spaces”, Electron. J. Diff. Eq., 2000:39 (2000) | MR
[24] Palagachev D. K., Softova L. G., “Singular integral operators, Morrey spaces and fine regularity of solutions to PDE's”, Potential Anal., 20:3 (2004), 237–263 | DOI | MR | Zbl
[25] Sharapudinov I. I., “On direct and inverse theorems of approximation theory in vector Lebesgue and Sobolev spaces”, Azerb. J. Math., 4:1 (2014), 55–72 | MR | Zbl
[26] Softova L. G., “The Dirichlet problem for elliptic equations with VMO coefficients in generalized Morrey spaces”, Advances in harmonic analysis and operator theory, Oper. Theory Adv. Appl., 229, Birkhäuser/Springer, Basel AG, Basel, 2013, 371–386 | MR | Zbl