On some properties of a Riesz potential in grand-Lebesgue and grand-Sobolev spaces
Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 83 (2022) no. 1, pp. 77-85.

Voir la notice de l'article provenant de la source Math-Net.Ru

This article considers a Riesz-type potential in non-standard grand-Lebesgue and grand-Sobolev spaces. The classical facts concerning Lebesgue and Sobolev spaces carry over to this case. The established properties play an important role in studying the solvability of boundary value problems for an elliptic-type equation in grand-Sobolev spaces.
@article{MMO_2022_83_1_a4,
     author = {Z. A. Kasumov and N. R. Ahmedzade},
     title = {On some properties of a {Riesz} potential in {grand-Lebesgue} and {grand-Sobolev} spaces},
     journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {77--85},
     publisher = {mathdoc},
     volume = {83},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MMO_2022_83_1_a4/}
}
TY  - JOUR
AU  - Z. A. Kasumov
AU  - N. R. Ahmedzade
TI  - On some properties of a Riesz potential in grand-Lebesgue and grand-Sobolev spaces
JO  - Trudy Moskovskogo matematičeskogo obŝestva
PY  - 2022
SP  - 77
EP  - 85
VL  - 83
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MMO_2022_83_1_a4/
LA  - ru
ID  - MMO_2022_83_1_a4
ER  - 
%0 Journal Article
%A Z. A. Kasumov
%A N. R. Ahmedzade
%T On some properties of a Riesz potential in grand-Lebesgue and grand-Sobolev spaces
%J Trudy Moskovskogo matematičeskogo obŝestva
%D 2022
%P 77-85
%V 83
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MMO_2022_83_1_a4/
%G ru
%F MMO_2022_83_1_a4
Z. A. Kasumov; N. R. Ahmedzade. On some properties of a Riesz potential in grand-Lebesgue and grand-Sobolev spaces. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 83 (2022) no. 1, pp. 77-85. http://geodesic.mathdoc.fr/item/MMO_2022_83_1_a4/

[1] B. T. Bilalov, “O bazisnosti vozmuschennoi sistemy eksponent v prostranstvakh tipa Morri”, Sib. matem. zhurn., 60:2 (2019), 323–350 | MR | Zbl

[2] Bilalov B. T., Guseinov Z. G., “Kriterii bazisnosti vozmuschennoi sistemy eksponent v lebegovykh prostranstvakh s peremennym pokazatelem summiruemosti”, DAN, 436:5 (2011), 586–589 | Zbl

[3] Mikhlin S. G., Lineinye uravneniya v chastnykh proizvodnykh, Vysshaya shkola, M., 1977

[4] Adams D. R., Morrey spaces, Springer, Switzerland, 2016 | MR

[5] N. Ahmedzade, Z. Kasumov, “On the solvability of the Dirichlet problem for the Laplace equation with the boundary value in grand-Lebesgue space. Nakhchivan State University. Scientific works”, The series of Physical, mathematical and technical sciences, 2020, no. 5(106), 62–69 | MR

[6] Bilalov B., Gasymov T., Guliyeva A., “On the solvability of the Riemann boundary value problem in Morrey"– Hardy classes”, Turk. J. Math., 40 (2016), 1085–1101 | DOI | MR | Zbl

[7] Bilalov B. T., Guseynov Z. G., “Basicity of a system of exponents with a piecewise linear phase in variable spaces”, Mediterr. J. Math., 9:3 (2012), 487–498 | DOI | MR | Zbl

[8] Bilalov B. T., Huseynli A. A., El-Shabrawy S. R., “Basis properties of trigonometric systems in weighted Morrey spaces”, Azerb. J. Math., 9:2 (2019), 200–226 | MR

[9] Bilalov B. T., Quliyeva A. A., “On basicity of exponential systems in Morrey-type spaces”, Internat. J. Math., 25:6 (2014), 1450054 | DOI | MR | Zbl

[10] Bilalov B. T., Sadigova S. R., “Frame properties of a part of an exponential system with degenerate coefficients in Hardy classes”, Georgian Math. J., 24:3 (2017), 325–338 | DOI | MR | Zbl

[11] Bilalov B. T., Sadigova S. R., “On solvability in the small of higher order elliptic equations in grand-Sobolev spaces”, Complex Var. Elliptic Eq., 66:12 (2021), 2117–2130 | DOI | MR | Zbl

[12] Bilalov B., Seyidova F., “Basicity of a system of exponents with a piecewise linear phase in Morrey-type spaces”, Turk. J. Math., 43:4 (2019), 1850–1866 | DOI | MR | Zbl

[13] Caso L., D'Ambrosio R., Softova L., “Generalized Morrey spaces over unbounded domains”, Azerb. J. Math., 10:1 (2020), 193–208 | MR | Zbl

[14] Castillo R. E., Rafeiro H., An introductory course in Lebesgue spaces, CMS Books in Mathematics, Springer, Cham, 2016 | DOI | MR | Zbl

[15] Chen Y., “Regularity of the solution to the Dirichlet problem in Morrey spaces”, J. Part. Diff. Eq., 15:2 (2002), 37–46 | MR | Zbl

[16] Cruz-Uribe D. V., Fiorenza A., Variable Lebesgue spaces, Applied and Numerical Harmonic Analysis, Birkhäuser/Springer, Heidelberg, 2013 | DOI | MR | Zbl

[17] Di Fazio G., Palagachev D. K., Ragusa M. A., “Global Morrey regularity of strong solutions to the Dirichlet problem for elliptic equations with discontinuous coefficients”, J. Funct. Anal., 166:2 (1999), 179–196 | DOI | MR | Zbl

[18] Fazio G. D., Ragusa M. A., “Interior estimates in Morrey spaces for strong solutions to nondivergence form equations with discontinuous coefficients”, J. Funct. Anal., 112 (1993), 241–256 | DOI | MR | Zbl

[19] P. Harjulehto, P. Hästö, Orlicz spaces and generalized Orlicz spaces, Lecture Notes in Math., 2236, Springer, Cham, 2019 | DOI | MR | Zbl

[20] Israfilov D. M., Tozman N. P., “Approximation in Morrey"– Smirnov classes”, Azerb. J. Math., 1:1 (2011), 99–113 | MR | Zbl

[21] Kokilashvili V., Meskhi A., Rafeiro H., Samko S., Integral operators in non-standard function spaces, v. 1, Oper. Theory Adv. Appl., 248, Variable exponent Lebesgue and amalgam spaces, Birkhäuser/Springer, Cham, 2016 | MR | Zbl

[22] Kokilashvili V., Meskhi A., Rafeiro H., Samko S., Integral operators in non-standard function spaces, v. 2, Oper. Theory Adv. Appl., 229, Variable exponent Hölder, Morrey"– Campanato and grand spaces, Birkhäuser/Springer, Cham, 2016 | MR

[23] Palagachev D. K., Ragusa M. A., Softova L. G., “Regular oblique derivative problem in Morrey spaces”, Electron. J. Diff. Eq., 2000:39 (2000) | MR

[24] Palagachev D. K., Softova L. G., “Singular integral operators, Morrey spaces and fine regularity of solutions to PDE's”, Potential Anal., 20:3 (2004), 237–263 | DOI | MR | Zbl

[25] Sharapudinov I. I., “On direct and inverse theorems of approximation theory in vector Lebesgue and Sobolev spaces”, Azerb. J. Math., 4:1 (2014), 55–72 | MR | Zbl

[26] Softova L. G., “The Dirichlet problem for elliptic equations with VMO coefficients in generalized Morrey spaces”, Advances in harmonic analysis and operator theory, Oper. Theory Adv. Appl., 229, Birkhäuser/Springer, Basel AG, Basel, 2013, 371–386 | MR | Zbl