Mathematical model of the spread of a pandemic like COVID-19
Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 83 (2022) no. 1, pp. 63-75
Voir la notice de l'article provenant de la source Math-Net.Ru
Using the example of the infectious disease called COVID-19, a mathematical model of the spread of a pandemic is considered. The virus that causes this disease emerged at the end of 2019 and spread to most countries around the world over the next year. A mathematical model of the emerging pandemic, called the SEIR-model (from the English words susceptible, exposed, infected, recovered), is described by a system of four ordinary dynamical equations given in §1.
The indicated system is reduced to a nonlinear integral equation of Hammerstein–Volterra type with an operator that does not have the property of monotonicity. In §3, we prove a theorem on the existence and uniqueness of a non-negative, bounded and summable solution of this system.
Based on real data on the COVID-19 disease in France and Italy, given in §2, numerical calculations are performed showing the absence of a second wave for the obtained solution.
@article{MMO_2022_83_1_a3,
author = {A. G. Sergeev and A. Kh. Khachatryan and Kh. A. Khachatryan},
title = {Mathematical model of the spread of a pandemic like {COVID-19}},
journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva},
pages = {63--75},
publisher = {mathdoc},
volume = {83},
number = {1},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MMO_2022_83_1_a3/}
}
TY - JOUR AU - A. G. Sergeev AU - A. Kh. Khachatryan AU - Kh. A. Khachatryan TI - Mathematical model of the spread of a pandemic like COVID-19 JO - Trudy Moskovskogo matematičeskogo obŝestva PY - 2022 SP - 63 EP - 75 VL - 83 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MMO_2022_83_1_a3/ LA - ru ID - MMO_2022_83_1_a3 ER -
%0 Journal Article %A A. G. Sergeev %A A. Kh. Khachatryan %A Kh. A. Khachatryan %T Mathematical model of the spread of a pandemic like COVID-19 %J Trudy Moskovskogo matematičeskogo obŝestva %D 2022 %P 63-75 %V 83 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MMO_2022_83_1_a3/ %G ru %F MMO_2022_83_1_a3
A. G. Sergeev; A. Kh. Khachatryan; Kh. A. Khachatryan. Mathematical model of the spread of a pandemic like COVID-19. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 83 (2022) no. 1, pp. 63-75. http://geodesic.mathdoc.fr/item/MMO_2022_83_1_a3/