Mathematical model of the spread of a pandemic like COVID-19
Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 83 (2022) no. 1, pp. 63-75.

Voir la notice de l'article provenant de la source Math-Net.Ru

Using the example of the infectious disease called COVID-19, a mathematical model of the spread of a pandemic is considered. The virus that causes this disease emerged at the end of 2019 and spread to most countries around the world over the next year. A mathematical model of the emerging pandemic, called the SEIR-model (from the English words susceptible, exposed, infected, recovered), is described by a system of four ordinary dynamical equations given in §1. The indicated system is reduced to a nonlinear integral equation of Hammerstein–Volterra type with an operator that does not have the property of monotonicity. In §3, we prove a theorem on the existence and uniqueness of a non-negative, bounded and summable solution of this system. Based on real data on the COVID-19 disease in France and Italy, given in §2, numerical calculations are performed showing the absence of a second wave for the obtained solution.
@article{MMO_2022_83_1_a3,
     author = {A. G. Sergeev and A. Kh. Khachatryan and Kh. A. Khachatryan},
     title = {Mathematical model of the spread of a pandemic like {COVID-19}},
     journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {63--75},
     publisher = {mathdoc},
     volume = {83},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MMO_2022_83_1_a3/}
}
TY  - JOUR
AU  - A. G. Sergeev
AU  - A. Kh. Khachatryan
AU  - Kh. A. Khachatryan
TI  - Mathematical model of the spread of a pandemic like COVID-19
JO  - Trudy Moskovskogo matematičeskogo obŝestva
PY  - 2022
SP  - 63
EP  - 75
VL  - 83
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MMO_2022_83_1_a3/
LA  - ru
ID  - MMO_2022_83_1_a3
ER  - 
%0 Journal Article
%A A. G. Sergeev
%A A. Kh. Khachatryan
%A Kh. A. Khachatryan
%T Mathematical model of the spread of a pandemic like COVID-19
%J Trudy Moskovskogo matematičeskogo obŝestva
%D 2022
%P 63-75
%V 83
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MMO_2022_83_1_a3/
%G ru
%F MMO_2022_83_1_a3
A. G. Sergeev; A. Kh. Khachatryan; Kh. A. Khachatryan. Mathematical model of the spread of a pandemic like COVID-19. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 83 (2022) no. 1, pp. 63-75. http://geodesic.mathdoc.fr/item/MMO_2022_83_1_a3/

[1] M. N. Asatryan, E. R. Gerasimuk, D. Yu. Logunov, T. A. Semenenko, A. L. Gintsburg, “Prognozirovanie dinamiki zabolevaemosti COVID-19 i planirovanie meropriyatii po vaktsinoprofilaktike naseleniya Moskvy na osnove matematicheskogo modelirovaniya”, Zhurnal mikrobiologii, epidemiologii i immunologii, 97:4 (2020), 289–302

[2] I. P. Natanson, Teoriya funktsii veschestvennoi peremennoi, Lan, M., 2021 | MR

[3] V. Feller, Vvedenie v teoriyu veroyatnostei i ee prilozheniya, Mir, M., 1984 | MR

[4] F. Brauer, “Compartmental models in epidemiology”, Mathematical Epidemiology, Lecture Notes in Math., 1945, Springer, Berlin, 2008, 19–79 | DOI | MR | Zbl

[5] D. Faranda, T. Alberti, “Modelling the second wave of COVID-19 infections in France and Italy via a Stochastic SEIR model”, Chaos, 30:11 (2020), 111101 hal-02668318 | DOI | MR | Zbl

[6] R. Ghomi, N. Asgari, A. Hajiheydari, R. Esteki, F. Biyabanaki, F. Nasirinasab, “The COVID-19 pandemic: a systematic review of the current evidence”, Infektsiya i immunitet, 10:4 (2020), 655–663