Structure of the Nuttall partition for some class of four-sheeted Riemann surfaces
Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 83 (2022) no. 1, pp. 37-61.

Voir la notice de l'article provenant de la source Math-Net.Ru

The structure of a Nuttall partition into sheets of some class of four-sheeted Riemann surfaces is studied. The corresponding class of multivalued analytic functions is a special class of algebraic functions of fourth order generated by the function inverse to the Zhukovskii function. We show that in this class of four-sheeted Riemann surfaces, the boundary between the second and third sheets of the Nuttall partition of the Riemann surface is completely characterized in terms of an extremal problem posed on the two-sheeted Riemann surface of the function $w$ defined by the equation $w^2=z^2-1$. In particular, we show that in this class of functions the boundary between the second and third sheets intersects neither the boundary between the first and second sheets nor that between the third and fourth sheets.
@article{MMO_2022_83_1_a2,
     author = {N. R. Ikonomov and S. P. Suetin},
     title = {Structure of the {Nuttall} partition for some class of four-sheeted {Riemann} surfaces},
     journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {37--61},
     publisher = {mathdoc},
     volume = {83},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MMO_2022_83_1_a2/}
}
TY  - JOUR
AU  - N. R. Ikonomov
AU  - S. P. Suetin
TI  - Structure of the Nuttall partition for some class of four-sheeted Riemann surfaces
JO  - Trudy Moskovskogo matematičeskogo obŝestva
PY  - 2022
SP  - 37
EP  - 61
VL  - 83
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MMO_2022_83_1_a2/
LA  - ru
ID  - MMO_2022_83_1_a2
ER  - 
%0 Journal Article
%A N. R. Ikonomov
%A S. P. Suetin
%T Structure of the Nuttall partition for some class of four-sheeted Riemann surfaces
%J Trudy Moskovskogo matematičeskogo obŝestva
%D 2022
%P 37-61
%V 83
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MMO_2022_83_1_a2/
%G ru
%F MMO_2022_83_1_a2
N. R. Ikonomov; S. P. Suetin. Structure of the Nuttall partition for some class of four-sheeted Riemann surfaces. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 83 (2022) no. 1, pp. 37-61. http://geodesic.mathdoc.fr/item/MMO_2022_83_1_a2/

[1] A. I. Aptekarev, “Asimptotika approksimatsii Ermita"– Pade dlya pary funktsii s tochkami vetvleniya”, Dokl. AN, 422:4 (2008), 443–445 | Zbl

[2] A. I. Aptekarev, V. I. Buslaev, A. Martines-Finkelshtein, S. P. Suetin, “Approksimatsii Pade, nepreryvnye drobi i ortogonalnye mnogochleny”, UMN, 66:6 (402) (2011), 37–122 | DOI | MR | Zbl

[3] A. I. Aptekarev, D. N. Tulyakov, “Abelev integral Nattolla na rimanovoi poverkhnosti kubicheskogo kornya mnogochlena tretei stepeni”, Izv. RAN. Ser. matem., 80:6 (2016), 5–42 | DOI | MR | Zbl

[4] Arakelyan N. U., “Effektivnoe analiticheskoe prodolzhenie stepennykh ryadov i lokalizatsiya ikh osobennostei”, Izvestiya NAN Armenii. Ser. matem., 38:4 (2003), 5–24 | MR | Zbl

[5] A. A. Gonchar, E. A. Rakhmanov, “Ravnovesnye raspredeleniya i skorost ratsionalnoi approksimatsii analiticheskikh funktsii”, Matem. sb., 134 (176):3 (11) (1987), 306–352 | Zbl

[6] A. A. Gonchar, E. A. Rakhmanov, S. P. Suetin, “Approksimatsii Pade"– Chebysheva dlya mnogoznachnykh analiticheskikh funktsii, variatsiya ravnovesnoi energii i $S$-svoistvo statsionarnykh kompaktov”, UMN, 66:6 (402) (2011), 3–36 | DOI | MR | Zbl

[7] N. R. Ikonomov, S. P. Suetin, “Skalyarnaya zadacha ravnovesiya i predelnoe raspredelenie nulei polinomov Ermita"– Pade II tipa”, Sovr. probl. matem. i teor. fiz., Sb. statei, Tr. MIAN, 309, MIAN, M., 2020, 174–197 | DOI | MR

[8] N. R. Ikonomov, S. P. Suetin, “Algoritm Viskovatova dlya polinomov Ermita"– Pade”, Matem. sb., 212:9 (2021), 94–118 | DOI | MR | Zbl

[9] A. V. Komlov, R. V. Palvelev, S. P. Suetin, E. M. Chirka, “Approksimatsii Ermita"– Pade dlya meromorfnykh funktsii na kompaktnoi rimanovoi poverkhnosti”, UMN, 72:4 (436) (2017), 95–130 | DOI | MR

[10] A. V. Komlov, “Polinomialnaya $m$-sistema Ermita"– Pade dlya meromorfnykh funktsii na kompaktnoi rimanovoi poverkhnosti”, Matem. sb., 212:12 (2021), 40–76 | DOI | MR

[11] E. A. Rakhmanov, S. P. Suetin, “Raspredelenie nulei polinomov Ermita"– Pade dlya pary funktsii, obrazuyuschei sistemu Nikishina”, Matem. sb., 204:9 (2013), 115–160 | DOI | MR | Zbl

[12] E. A. Rakhmanov, “Raspredelenie nulei polinomov Ermita"– Pade v sluchae Anzhelesko”, UMN, 73:3 (441) (2018), 89–156 | DOI | MR | Zbl

[13] V. N. Sorokin, “Approksimatsii Ermita"– Pade funktsii Veilya i ee proizvodnoi dlya diskretnykh mer”, Matem. sb., 211:10 (2020), 139–156 | DOI | MR | Zbl

[14] S. P. Suetin, “O ravnomernoi skhodimosti diagonalnykh approksimatsii Pade dlya giperellipticheskikh funktsii”, Matem. sb., 191:9 (2000), 81–114 | DOI | MR | Zbl

[15] S. P. Suetin, “Ob odnom primere sistemy Nikishina”, Matem. zametki, 104:6 (2018), 918–929 | DOI | Zbl

[16] S. P. Suetin, “O novom podkhode k zadache o raspredelenii nulei polinomov Ermita"– Pade dlya sistemy Nikishina”, Kompl. analiz, matem. fizika i pril., Sb. statei, Tr. MIAN, 301, MAIK, M., 2018, 259–275 | DOI

[17] S. P. Suetin, “O suschestvovanii trekhlistnoi poverkhnosti Nattolla v nekotorom klasse beskonechnoznachnykh analiticheskikh funktsii”, UMN, 74:2 (446) (2019), 187–188 | DOI | MR | Zbl

[18] S. P. Suetin, “Ob ekvivalentnosti skalyarnoi i vektornoi zadach ravnovesiya dlya pary funktsii, obrazuyuschei sistemu Nikishina”, Matem. zametki, 106:6 (2019), 904–916 | DOI | Zbl

[19] S. P. Suetin, “Polinomy Ermita"– Pade i kvadratichnye approksimatsii Shafera dlya mnogoznachnykh analiticheskikh funktsii”, UMN, 75:4 (2020), 213–214 | DOI | MR | Zbl

[20] E. M. Chirka, “Potentsialy na kompaktnoi rimanovoi poverkhnosti”, Kompl. analiz, matem. fizika i pril., Sb. statei, Tr. MIAN, 301, MAIK, M., 2018, 272–303

[21] E. M. Chirka, “Ravnovesnye mery na kompaktnoi rimanovoi poverkhnosti”, Matem. fizika i pril., Sb. statei, Tr. MIAN, 306, MIAN, M., 2019, 287–319 | DOI

[22] E. M. Chirka, “Meromorfnaya interpolyatsiya na kompaktnoi rimanovoi poverkhnosti”, Matem. zametki, 106:1 (2019), 154–157 | DOI | MR | Zbl

[23] E. M. Chirka, “Emkosti na kompaktnoi rimanovoi poverkhnosti”, Analiz i matem. fizika, Sb. statei, Tr. MIAN, 311, MIAN, M., 2020, 41–83 | DOI

[24] M. Shiffer, D. K. Spenser, Funktsionaly na konechnykh rimanovykh poverkhnostyakh, IL, M., 1957

[25] A. I. Aptekarev, M. L. Yattselev, “Padé approximants for functions with branch points — strong asymptotics of Nuttall"– Stahl polynomials”, Acta Math., 215:2 (2015) | DOI | MR | Zbl

[26] “A. López-García, G. López Lagomasino”, J. Approx. Theory, 225 (2018), 1–40 | DOI | MR | Zbl

[27] A. Martínez-Finkelshtein, E. A. Rakhmanov, S. P. Suetin, “Asymptotics of type I Hermite"– Padé polynomials for semiclassical functions”, Modern trends in constructive function theory, Contemp. Math., 661, AMS, Providence, RI, 2016, 199–228 | DOI | MR | Zbl

[28] J. Nuttall, S. R. Singh, “Orthogonal polynomials and Padé approximants associated with a system of arcs”, J. Approx. Theory, 21:1 (1977), 1–42 | DOI | MR | Zbl

[29] J. Nuttall, “Asymptotics of diagonal Hermite"– Padé polynomials”, J. Approx.Theory, 42:4 (1984), 299–386 | DOI | MR | Zbl

[30] E. A. Rakhmanov, “Orthogonal polynomials and $S$-curves”, Recent advances in orthogonal polynomials, special functions and their applications, Contemp. Math., 578, AMS, Providence, RI, 2012, 195–239 | DOI | MR | Zbl

[31] H. Stahl, “Asymptotics of Hermite"– Padé polynomials and related convergence results. A summary of results”, Nonlinear numerical methods and rational approximation (Wilrijk, 1987), Math. Appl., 43, Reidel, Dordrecht, 1988, 23–53 | MR | Zbl

[32] H. Stahl, “The convergence of Padé approximants to functions with branch points”, J. Approx. Theory, 91:2 (1997), 139–204 | DOI | MR | Zbl

[33] H. R. Stahl, Sets of minimal capacity and extremal domains, arXiv: 1205.3811

[34] S. P. Suetin, Hermite"– Padé polynomials and analytic continuation: new approach and some results, 2018, arXiv: 1806.08735