Structure of the Nuttall partition for some class of four-sheeted Riemann surfaces
Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 83 (2022) no. 1, pp. 37-61
Voir la notice de l'article provenant de la source Math-Net.Ru
The structure of a Nuttall partition into sheets of some class of four-sheeted Riemann surfaces is studied. The corresponding class of multivalued analytic functions is a special class of algebraic functions of fourth order generated by the function inverse to the Zhukovskii function. We show that in this class of four-sheeted Riemann surfaces, the boundary between the second and third sheets of the Nuttall partition of the Riemann surface is completely characterized in terms of an extremal problem posed on the two-sheeted Riemann surface of the function $w$
defined by the equation $w^2=z^2-1$. In particular, we show that in this class of functions the boundary between the second and third sheets intersects neither the boundary between the first and second sheets nor that between the third and fourth sheets.
@article{MMO_2022_83_1_a2,
author = {N. R. Ikonomov and S. P. Suetin},
title = {Structure of the {Nuttall} partition for some class of four-sheeted {Riemann} surfaces},
journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva},
pages = {37--61},
publisher = {mathdoc},
volume = {83},
number = {1},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MMO_2022_83_1_a2/}
}
TY - JOUR AU - N. R. Ikonomov AU - S. P. Suetin TI - Structure of the Nuttall partition for some class of four-sheeted Riemann surfaces JO - Trudy Moskovskogo matematičeskogo obŝestva PY - 2022 SP - 37 EP - 61 VL - 83 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MMO_2022_83_1_a2/ LA - ru ID - MMO_2022_83_1_a2 ER -
%0 Journal Article %A N. R. Ikonomov %A S. P. Suetin %T Structure of the Nuttall partition for some class of four-sheeted Riemann surfaces %J Trudy Moskovskogo matematičeskogo obŝestva %D 2022 %P 37-61 %V 83 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MMO_2022_83_1_a2/ %G ru %F MMO_2022_83_1_a2
N. R. Ikonomov; S. P. Suetin. Structure of the Nuttall partition for some class of four-sheeted Riemann surfaces. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 83 (2022) no. 1, pp. 37-61. http://geodesic.mathdoc.fr/item/MMO_2022_83_1_a2/