Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MMO_2022_83_1_a2, author = {N. R. Ikonomov and S. P. Suetin}, title = {Structure of the {Nuttall} partition for some class of four-sheeted {Riemann} surfaces}, journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva}, pages = {37--61}, publisher = {mathdoc}, volume = {83}, number = {1}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MMO_2022_83_1_a2/} }
TY - JOUR AU - N. R. Ikonomov AU - S. P. Suetin TI - Structure of the Nuttall partition for some class of four-sheeted Riemann surfaces JO - Trudy Moskovskogo matematičeskogo obŝestva PY - 2022 SP - 37 EP - 61 VL - 83 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MMO_2022_83_1_a2/ LA - ru ID - MMO_2022_83_1_a2 ER -
%0 Journal Article %A N. R. Ikonomov %A S. P. Suetin %T Structure of the Nuttall partition for some class of four-sheeted Riemann surfaces %J Trudy Moskovskogo matematičeskogo obŝestva %D 2022 %P 37-61 %V 83 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MMO_2022_83_1_a2/ %G ru %F MMO_2022_83_1_a2
N. R. Ikonomov; S. P. Suetin. Structure of the Nuttall partition for some class of four-sheeted Riemann surfaces. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 83 (2022) no. 1, pp. 37-61. http://geodesic.mathdoc.fr/item/MMO_2022_83_1_a2/
[1] A. I. Aptekarev, “Asimptotika approksimatsii Ermita"– Pade dlya pary funktsii s tochkami vetvleniya”, Dokl. AN, 422:4 (2008), 443–445 | Zbl
[2] A. I. Aptekarev, V. I. Buslaev, A. Martines-Finkelshtein, S. P. Suetin, “Approksimatsii Pade, nepreryvnye drobi i ortogonalnye mnogochleny”, UMN, 66:6 (402) (2011), 37–122 | DOI | MR | Zbl
[3] A. I. Aptekarev, D. N. Tulyakov, “Abelev integral Nattolla na rimanovoi poverkhnosti kubicheskogo kornya mnogochlena tretei stepeni”, Izv. RAN. Ser. matem., 80:6 (2016), 5–42 | DOI | MR | Zbl
[4] Arakelyan N. U., “Effektivnoe analiticheskoe prodolzhenie stepennykh ryadov i lokalizatsiya ikh osobennostei”, Izvestiya NAN Armenii. Ser. matem., 38:4 (2003), 5–24 | MR | Zbl
[5] A. A. Gonchar, E. A. Rakhmanov, “Ravnovesnye raspredeleniya i skorost ratsionalnoi approksimatsii analiticheskikh funktsii”, Matem. sb., 134 (176):3 (11) (1987), 306–352 | Zbl
[6] A. A. Gonchar, E. A. Rakhmanov, S. P. Suetin, “Approksimatsii Pade"– Chebysheva dlya mnogoznachnykh analiticheskikh funktsii, variatsiya ravnovesnoi energii i $S$-svoistvo statsionarnykh kompaktov”, UMN, 66:6 (402) (2011), 3–36 | DOI | MR | Zbl
[7] N. R. Ikonomov, S. P. Suetin, “Skalyarnaya zadacha ravnovesiya i predelnoe raspredelenie nulei polinomov Ermita"– Pade II tipa”, Sovr. probl. matem. i teor. fiz., Sb. statei, Tr. MIAN, 309, MIAN, M., 2020, 174–197 | DOI | MR
[8] N. R. Ikonomov, S. P. Suetin, “Algoritm Viskovatova dlya polinomov Ermita"– Pade”, Matem. sb., 212:9 (2021), 94–118 | DOI | MR | Zbl
[9] A. V. Komlov, R. V. Palvelev, S. P. Suetin, E. M. Chirka, “Approksimatsii Ermita"– Pade dlya meromorfnykh funktsii na kompaktnoi rimanovoi poverkhnosti”, UMN, 72:4 (436) (2017), 95–130 | DOI | MR
[10] A. V. Komlov, “Polinomialnaya $m$-sistema Ermita"– Pade dlya meromorfnykh funktsii na kompaktnoi rimanovoi poverkhnosti”, Matem. sb., 212:12 (2021), 40–76 | DOI | MR
[11] E. A. Rakhmanov, S. P. Suetin, “Raspredelenie nulei polinomov Ermita"– Pade dlya pary funktsii, obrazuyuschei sistemu Nikishina”, Matem. sb., 204:9 (2013), 115–160 | DOI | MR | Zbl
[12] E. A. Rakhmanov, “Raspredelenie nulei polinomov Ermita"– Pade v sluchae Anzhelesko”, UMN, 73:3 (441) (2018), 89–156 | DOI | MR | Zbl
[13] V. N. Sorokin, “Approksimatsii Ermita"– Pade funktsii Veilya i ee proizvodnoi dlya diskretnykh mer”, Matem. sb., 211:10 (2020), 139–156 | DOI | MR | Zbl
[14] S. P. Suetin, “O ravnomernoi skhodimosti diagonalnykh approksimatsii Pade dlya giperellipticheskikh funktsii”, Matem. sb., 191:9 (2000), 81–114 | DOI | MR | Zbl
[15] S. P. Suetin, “Ob odnom primere sistemy Nikishina”, Matem. zametki, 104:6 (2018), 918–929 | DOI | Zbl
[16] S. P. Suetin, “O novom podkhode k zadache o raspredelenii nulei polinomov Ermita"– Pade dlya sistemy Nikishina”, Kompl. analiz, matem. fizika i pril., Sb. statei, Tr. MIAN, 301, MAIK, M., 2018, 259–275 | DOI
[17] S. P. Suetin, “O suschestvovanii trekhlistnoi poverkhnosti Nattolla v nekotorom klasse beskonechnoznachnykh analiticheskikh funktsii”, UMN, 74:2 (446) (2019), 187–188 | DOI | MR | Zbl
[18] S. P. Suetin, “Ob ekvivalentnosti skalyarnoi i vektornoi zadach ravnovesiya dlya pary funktsii, obrazuyuschei sistemu Nikishina”, Matem. zametki, 106:6 (2019), 904–916 | DOI | Zbl
[19] S. P. Suetin, “Polinomy Ermita"– Pade i kvadratichnye approksimatsii Shafera dlya mnogoznachnykh analiticheskikh funktsii”, UMN, 75:4 (2020), 213–214 | DOI | MR | Zbl
[20] E. M. Chirka, “Potentsialy na kompaktnoi rimanovoi poverkhnosti”, Kompl. analiz, matem. fizika i pril., Sb. statei, Tr. MIAN, 301, MAIK, M., 2018, 272–303
[21] E. M. Chirka, “Ravnovesnye mery na kompaktnoi rimanovoi poverkhnosti”, Matem. fizika i pril., Sb. statei, Tr. MIAN, 306, MIAN, M., 2019, 287–319 | DOI
[22] E. M. Chirka, “Meromorfnaya interpolyatsiya na kompaktnoi rimanovoi poverkhnosti”, Matem. zametki, 106:1 (2019), 154–157 | DOI | MR | Zbl
[23] E. M. Chirka, “Emkosti na kompaktnoi rimanovoi poverkhnosti”, Analiz i matem. fizika, Sb. statei, Tr. MIAN, 311, MIAN, M., 2020, 41–83 | DOI
[24] M. Shiffer, D. K. Spenser, Funktsionaly na konechnykh rimanovykh poverkhnostyakh, IL, M., 1957
[25] A. I. Aptekarev, M. L. Yattselev, “Padé approximants for functions with branch points — strong asymptotics of Nuttall"– Stahl polynomials”, Acta Math., 215:2 (2015) | DOI | MR | Zbl
[26] “A. López-García, G. López Lagomasino”, J. Approx. Theory, 225 (2018), 1–40 | DOI | MR | Zbl
[27] A. Martínez-Finkelshtein, E. A. Rakhmanov, S. P. Suetin, “Asymptotics of type I Hermite"– Padé polynomials for semiclassical functions”, Modern trends in constructive function theory, Contemp. Math., 661, AMS, Providence, RI, 2016, 199–228 | DOI | MR | Zbl
[28] J. Nuttall, S. R. Singh, “Orthogonal polynomials and Padé approximants associated with a system of arcs”, J. Approx. Theory, 21:1 (1977), 1–42 | DOI | MR | Zbl
[29] J. Nuttall, “Asymptotics of diagonal Hermite"– Padé polynomials”, J. Approx.Theory, 42:4 (1984), 299–386 | DOI | MR | Zbl
[30] E. A. Rakhmanov, “Orthogonal polynomials and $S$-curves”, Recent advances in orthogonal polynomials, special functions and their applications, Contemp. Math., 578, AMS, Providence, RI, 2012, 195–239 | DOI | MR | Zbl
[31] H. Stahl, “Asymptotics of Hermite"– Padé polynomials and related convergence results. A summary of results”, Nonlinear numerical methods and rational approximation (Wilrijk, 1987), Math. Appl., 43, Reidel, Dordrecht, 1988, 23–53 | MR | Zbl
[32] H. Stahl, “The convergence of Padé approximants to functions with branch points”, J. Approx. Theory, 91:2 (1997), 139–204 | DOI | MR | Zbl
[33] H. R. Stahl, Sets of minimal capacity and extremal domains, arXiv: 1205.3811
[34] S. P. Suetin, Hermite"– Padé polynomials and analytic continuation: new approach and some results, 2018, arXiv: 1806.08735