On determinant representations of Hermite--Pad\'e polynomials
Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 83 (2022) no. 1, pp. 17-35

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work we introduce new concepts: weakly normal index, weakly perfect system of functions. With these concepts for an arbitrary system of power series we formulate and prove criteria for the uniqueness of solutions to two Hermite–Padé problems, and obtain explicit determinant representations of Hermite–Padé types 1 and 2 polynomials. Proven statements complement well-known results in Hermite–Padé approximation theory.
@article{MMO_2022_83_1_a1,
     author = {A. P. Starovoitov and N. V. Ryabchenko},
     title = {On determinant representations of {Hermite--Pad\'e} polynomials},
     journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {17--35},
     publisher = {mathdoc},
     volume = {83},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MMO_2022_83_1_a1/}
}
TY  - JOUR
AU  - A. P. Starovoitov
AU  - N. V. Ryabchenko
TI  - On determinant representations of Hermite--Pad\'e polynomials
JO  - Trudy Moskovskogo matematičeskogo obŝestva
PY  - 2022
SP  - 17
EP  - 35
VL  - 83
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MMO_2022_83_1_a1/
LA  - ru
ID  - MMO_2022_83_1_a1
ER  - 
%0 Journal Article
%A A. P. Starovoitov
%A N. V. Ryabchenko
%T On determinant representations of Hermite--Pad\'e polynomials
%J Trudy Moskovskogo matematičeskogo obŝestva
%D 2022
%P 17-35
%V 83
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MMO_2022_83_1_a1/
%G ru
%F MMO_2022_83_1_a1
A. P. Starovoitov; N. V. Ryabchenko. On determinant representations of Hermite--Pad\'e polynomials. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 83 (2022) no. 1, pp. 17-35. http://geodesic.mathdoc.fr/item/MMO_2022_83_1_a1/