Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MMO_2022_83_1_a1, author = {A. P. Starovoitov and N. V. Ryabchenko}, title = {On determinant representations of {Hermite--Pad\'e} polynomials}, journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva}, pages = {17--35}, publisher = {mathdoc}, volume = {83}, number = {1}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MMO_2022_83_1_a1/} }
TY - JOUR AU - A. P. Starovoitov AU - N. V. Ryabchenko TI - On determinant representations of Hermite--Pad\'e polynomials JO - Trudy Moskovskogo matematičeskogo obŝestva PY - 2022 SP - 17 EP - 35 VL - 83 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MMO_2022_83_1_a1/ LA - ru ID - MMO_2022_83_1_a1 ER -
A. P. Starovoitov; N. V. Ryabchenko. On determinant representations of Hermite--Pad\'e polynomials. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 83 (2022) no. 1, pp. 17-35. http://geodesic.mathdoc.fr/item/MMO_2022_83_1_a1/
[1] A. I. Aptekarev, V. I. Buslaev, A. Martines-Finkelshtein, S. P. Suetin, “Approksimatsii Pade, nepreryvnye drobi i ortogonalnye mnogochleny”, UMN, 66:6(402) (2011), 37–122 | DOI | MR | Zbl
[2] A. I. Aptekarev, V. G. Lysov, D. N. Tulyakov, “Sluchainye matritsy s vneshnim istochnikom i asimptotika sovmestno ortogonalnykh mnogochlenov”, Matem. sb., 202:2 (2011), 3–56 | DOI | Zbl
[3] Dzh. ml. Beiker, P. Greivs-Morris, Approksimatsii Pade, Mir, M., 1986 | MR
[4] N. R. Ikonomov, S. P. Suetin, “Algoritm Viskovatova dlya polinomov Ermita–Pade”, Matem. sb., 212:9 (2021), 94–118 | DOI | MR | Zbl
[5] V. A. Kalyagin, “Approksimatsii Ermita–Pade i spektralnyi analiz nesimmetrichnykh operatorov”, Matem. sb., 185:6 (1994), 79–100
[6] F. Klein, Elementarnaya matematika s tochki zreniya vysshei, V 2-kh tomakh, v. 1, Arifmetika. Algebra. Analiz, Nauka, M., 1987 | MR
[7] V. G. Lysov, “Approksimatsii Ermita–Pade smeshannogo tipa dlya sistemy Nikishina”, Analiz i matematicheskaya fizika, Sb. statei, Trudy MIAN, 311, MIAN, M., 2020, 213–227 | DOI
[8] E. M. Nikishin, V. N. Sorokin, Ratsionalnye approksimatsii i ortogonalnost, Nauka, M., 1988
[9] A. I. Aptekarev (red.), Ratsionalnye priblizheniya postoyannoi Eilera i rekurrentnye sootnosheniya, Sb. statei, Sovr. probl. matem., 9, MIAN, M., 2007
[10] V. N. Sorokin, “Tsiklicheskie grafy i teorema Aperi”, UMN, 57:3(345) (2002), 99–134 | DOI | MR | Zbl
[11] V. N. Sorokin, “Approksimatsii Ermita–Pade funktsii Veilya i ee proizvodnoi dlya diskretnykh mer”, Matem. sb., 211:10 (2020), 139–156 | DOI | MR | Zbl
[12] A. P. Starovoitov, N. V. Ryabchenko, “Analogi formuly Shmidta dlya poliortogonalnykh mnogochlenov pervogo tipa”, Matem. zametki., 110:3 (2021), 424–433 | DOI | MR | Zbl
[13] A. P. Starovoitov, N. V. Ryabchenko, “O yavnom vide poliortogonalnykh mnogochlenov”, Izv. vuzov. Matem., 2021, no. 4, 80–89 | Zbl
[14] A. P. Starovoitov, N. V. Ryabchenko, A. A. Drapeza, “O suschestvovanii i edinstvennosti mnogochlenov Ermita–Pade pervogo roda”, PMFT, 2019, no. 3(40), 100–103 | Zbl
[15] S. P. Suetin, “Approksimatsii Pade i effektivnoe analiticheskoe prodolzhenie stepennogo ryada”, UMN, 57:1(343) (2002), 45–142 | DOI | MR | Zbl
[16] S. P. Suetin, “Raspredelenie nulei polinomov Pade i analiticheskoe prodolzhenie”, UMN, 70:5(425) (2015), 121–174 | DOI | MR | Zbl
[17] S. P. Suetin, “Polinomy Ermita–Pade i kvadratichnye approksimatsii Shafera dlya mnogoznachnykh analiticheskikh funktsii”, UMN, 75:4(454) (2020), 213–214 | DOI | MR | Zbl
[18] A. I. Aptekarev, P. M. Bleher, A. B. J. Kuijlaars, “Large $n$ limit of Gaussian random matrices with external source. Part II”, Comm. Math. Phys., 259:2 (2005), 367–389 | DOI | MR | Zbl
[19] A. I. Aptekarev, A. Branquinho, W. Van Assche, “Multiple orthogonal polynomials for classical weights”, Trans. AMS, 355:10 (2003), 3887–3914 | DOI | MR | Zbl
[20] A. I. Aptekarev, V. A. Kalyagin, E. B. Saff, “Higher-order three-term recurrences and asymptotics of multiple orthogonal polynomials”, Constr. Approx., 30:2 (2009), 175–223 | DOI | MR | Zbl
[21] B. Beckermann, V. Kalyagin, A. C. Matos, F. Wielonsky, How well does the Hermite–Padé approximation smooth the Gibbs phenomenon?, Math. Comput., 80:274 (2011), 931–958 | DOI | MR | Zbl
[22] P. M. Bleher, A. B. J. Kuijlaars, “Random matrices with external source and multiple orthogonal polynomials”, Int. Math. Res. Not., 3 (2004), 109–129 | DOI | MR | Zbl
[23] J. P. Boyd, “Chebyshev expansion on intervals with branch points with application to the root of Kepler's equation: A Chebyshev–Hermite–Padé method”, J. Comput. Appl. Math., 223:2 (2009), 693–702 | DOI | MR | Zbl
[24] G. V. Chudnovsky, “Hermite–Padé approximations to exponential functions and elementary estimates of the measure of irrationality of $\pi$”, The Riemann problem, complete integrability and arithmetic applications, Lecture Notes in Math., 925, Springer-Verlag, New York–Berlin, 1982, 299–322 | DOI | MR
[25] E. Daems, A. B. J. Kuijlaars, “Multiple orthogonal polynomials of mixed type and non-intersecting Brownian motions”, J. Approx. Theory, 146 (2007), 91–114 | DOI | MR | Zbl
[26] C. Hermite, “Sur la généralisation des fractions continues algébriques”, Ann. Mat. Pura Appl. Ser. 2A, 21 (1893), 289–308 | DOI
[27] C. Hermite, “Sur la fonction exponentielle”, C. R. Acad. Sci. (Paris), 77 (1973), 18–293
[28] A. B. J. Kuijlaars, “Multiple orthogonal polynomial ensembles”, Recent trends in orthogonal polynomials and approximation theory, Contemp. Math., 507, AMS, Providence, RI, 2010, 155–176 | DOI | MR | Zbl
[29] A. B. J. Kuijlaars, A. Martínez-Finkelshtein, F. Wielonsky, “Non-intersecting squared Bessel paths and multiple orthogonal polynomials for modified Bessel weights”, Comm. Math. Phys., 286:1 (2009), 217–275 | DOI | MR | Zbl
[30] G. L. Lagomasino, S. M. Peralta, J. Szmigielski, “Mixed type Hermite–Padé approximation inspired by the Degasperis–Procesi equation”, Adv. Math., 349 (2019), 813–838 | DOI | MR | Zbl
[31] K. Mahler, “Applications of some formulae by Hermite to the approximation of exponentials and logarithms”, Math. Ann., 168 (1967), 372–399 | DOI | MR
[32] H. Padé, “Mémoire sur les développement en fractions continues de la fonction exponential”, Ann. Sci., Ecole Normale Sup. (3), 16 (1899), 395–426 | DOI | MR
[33] H. Stahl, “Asymptotics for quadratic Hermite–Padé polynomals associated with the exponential function”, Electron. Trans. Num. Anal., 14 (2002), 195–222 | MR | Zbl
[34] W. Van Assche, “Multiple orthogonal polynomials, irrationality and transcedence”, Continued fractions: from analytic number theory to constructive approximation (Columbia, MO, USA. 1998), Contemp. Math., 236, AMS, Providence, RI, 1999, 325–342 | DOI | MR