On determinant representations of Hermite--Pad\'e polynomials
Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 83 (2022) no. 1, pp. 17-35.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work we introduce new concepts: weakly normal index, weakly perfect system of functions. With these concepts for an arbitrary system of power series we formulate and prove criteria for the uniqueness of solutions to two Hermite–Padé problems, and obtain explicit determinant representations of Hermite–Padé types 1 and 2 polynomials. Proven statements complement well-known results in Hermite–Padé approximation theory.
@article{MMO_2022_83_1_a1,
     author = {A. P. Starovoitov and N. V. Ryabchenko},
     title = {On determinant representations of {Hermite--Pad\'e} polynomials},
     journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {17--35},
     publisher = {mathdoc},
     volume = {83},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MMO_2022_83_1_a1/}
}
TY  - JOUR
AU  - A. P. Starovoitov
AU  - N. V. Ryabchenko
TI  - On determinant representations of Hermite--Pad\'e polynomials
JO  - Trudy Moskovskogo matematičeskogo obŝestva
PY  - 2022
SP  - 17
EP  - 35
VL  - 83
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MMO_2022_83_1_a1/
LA  - ru
ID  - MMO_2022_83_1_a1
ER  - 
%0 Journal Article
%A A. P. Starovoitov
%A N. V. Ryabchenko
%T On determinant representations of Hermite--Pad\'e polynomials
%J Trudy Moskovskogo matematičeskogo obŝestva
%D 2022
%P 17-35
%V 83
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MMO_2022_83_1_a1/
%G ru
%F MMO_2022_83_1_a1
A. P. Starovoitov; N. V. Ryabchenko. On determinant representations of Hermite--Pad\'e polynomials. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 83 (2022) no. 1, pp. 17-35. http://geodesic.mathdoc.fr/item/MMO_2022_83_1_a1/

[1] A. I. Aptekarev, V. I. Buslaev, A. Martines-Finkelshtein, S. P. Suetin, “Approksimatsii Pade, nepreryvnye drobi i ortogonalnye mnogochleny”, UMN, 66:6(402) (2011), 37–122 | DOI | MR | Zbl

[2] A. I. Aptekarev, V. G. Lysov, D. N. Tulyakov, “Sluchainye matritsy s vneshnim istochnikom i asimptotika sovmestno ortogonalnykh mnogochlenov”, Matem. sb., 202:2 (2011), 3–56 | DOI | Zbl

[3] Dzh. ml. Beiker, P. Greivs-Morris, Approksimatsii Pade, Mir, M., 1986 | MR

[4] N. R. Ikonomov, S. P. Suetin, “Algoritm Viskovatova dlya polinomov Ermita–Pade”, Matem. sb., 212:9 (2021), 94–118 | DOI | MR | Zbl

[5] V. A. Kalyagin, “Approksimatsii Ermita–Pade i spektralnyi analiz nesimmetrichnykh operatorov”, Matem. sb., 185:6 (1994), 79–100

[6] F. Klein, Elementarnaya matematika s tochki zreniya vysshei, V 2-kh tomakh, v. 1, Arifmetika. Algebra. Analiz, Nauka, M., 1987 | MR

[7] V. G. Lysov, “Approksimatsii Ermita–Pade smeshannogo tipa dlya sistemy Nikishina”, Analiz i matematicheskaya fizika, Sb. statei, Trudy MIAN, 311, MIAN, M., 2020, 213–227 | DOI

[8] E. M. Nikishin, V. N. Sorokin, Ratsionalnye approksimatsii i ortogonalnost, Nauka, M., 1988

[9] A. I. Aptekarev (red.), Ratsionalnye priblizheniya postoyannoi Eilera i rekurrentnye sootnosheniya, Sb. statei, Sovr. probl. matem., 9, MIAN, M., 2007

[10] V. N. Sorokin, “Tsiklicheskie grafy i teorema Aperi”, UMN, 57:3(345) (2002), 99–134 | DOI | MR | Zbl

[11] V. N. Sorokin, “Approksimatsii Ermita–Pade funktsii Veilya i ee proizvodnoi dlya diskretnykh mer”, Matem. sb., 211:10 (2020), 139–156 | DOI | MR | Zbl

[12] A. P. Starovoitov, N. V. Ryabchenko, “Analogi formuly Shmidta dlya poliortogonalnykh mnogochlenov pervogo tipa”, Matem. zametki., 110:3 (2021), 424–433 | DOI | MR | Zbl

[13] A. P. Starovoitov, N. V. Ryabchenko, “O yavnom vide poliortogonalnykh mnogochlenov”, Izv. vuzov. Matem., 2021, no. 4, 80–89 | Zbl

[14] A. P. Starovoitov, N. V. Ryabchenko, A. A. Drapeza, “O suschestvovanii i edinstvennosti mnogochlenov Ermita–Pade pervogo roda”, PMFT, 2019, no. 3(40), 100–103 | Zbl

[15] S. P. Suetin, “Approksimatsii Pade i effektivnoe analiticheskoe prodolzhenie stepennogo ryada”, UMN, 57:1(343) (2002), 45–142 | DOI | MR | Zbl

[16] S. P. Suetin, “Raspredelenie nulei polinomov Pade i analiticheskoe prodolzhenie”, UMN, 70:5(425) (2015), 121–174 | DOI | MR | Zbl

[17] S. P. Suetin, “Polinomy Ermita–Pade i kvadratichnye approksimatsii Shafera dlya mnogoznachnykh analiticheskikh funktsii”, UMN, 75:4(454) (2020), 213–214 | DOI | MR | Zbl

[18] A. I. Aptekarev, P. M. Bleher, A. B. J. Kuijlaars, “Large $n$ limit of Gaussian random matrices with external source. Part II”, Comm. Math. Phys., 259:2 (2005), 367–389 | DOI | MR | Zbl

[19] A. I. Aptekarev, A. Branquinho, W. Van Assche, “Multiple orthogonal polynomials for classical weights”, Trans. AMS, 355:10 (2003), 3887–3914 | DOI | MR | Zbl

[20] A. I. Aptekarev, V. A. Kalyagin, E. B. Saff, “Higher-order three-term recurrences and asymptotics of multiple orthogonal polynomials”, Constr. Approx., 30:2 (2009), 175–223 | DOI | MR | Zbl

[21] B. Beckermann, V. Kalyagin, A. C. Matos, F. Wielonsky, How well does the Hermite–Padé approximation smooth the Gibbs phenomenon?, Math. Comput., 80:274 (2011), 931–958 | DOI | MR | Zbl

[22] P. M. Bleher, A. B. J. Kuijlaars, “Random matrices with external source and multiple orthogonal polynomials”, Int. Math. Res. Not., 3 (2004), 109–129 | DOI | MR | Zbl

[23] J. P. Boyd, “Chebyshev expansion on intervals with branch points with application to the root of Kepler's equation: A Chebyshev–Hermite–Padé method”, J. Comput. Appl. Math., 223:2 (2009), 693–702 | DOI | MR | Zbl

[24] G. V. Chudnovsky, “Hermite–Padé approximations to exponential functions and elementary estimates of the measure of irrationality of $\pi$”, The Riemann problem, complete integrability and arithmetic applications, Lecture Notes in Math., 925, Springer-Verlag, New York–Berlin, 1982, 299–322 | DOI | MR

[25] E. Daems, A. B. J. Kuijlaars, “Multiple orthogonal polynomials of mixed type and non-intersecting Brownian motions”, J. Approx. Theory, 146 (2007), 91–114 | DOI | MR | Zbl

[26] C. Hermite, “Sur la généralisation des fractions continues algébriques”, Ann. Mat. Pura Appl. Ser. 2A, 21 (1893), 289–308 | DOI

[27] C. Hermite, “Sur la fonction exponentielle”, C. R. Acad. Sci. (Paris), 77 (1973), 18–293

[28] A. B. J. Kuijlaars, “Multiple orthogonal polynomial ensembles”, Recent trends in orthogonal polynomials and approximation theory, Contemp. Math., 507, AMS, Providence, RI, 2010, 155–176 | DOI | MR | Zbl

[29] A. B. J. Kuijlaars, A. Martínez-Finkelshtein, F. Wielonsky, “Non-intersecting squared Bessel paths and multiple orthogonal polynomials for modified Bessel weights”, Comm. Math. Phys., 286:1 (2009), 217–275 | DOI | MR | Zbl

[30] G. L. Lagomasino, S. M. Peralta, J. Szmigielski, “Mixed type Hermite–Padé approximation inspired by the Degasperis–Procesi equation”, Adv. Math., 349 (2019), 813–838 | DOI | MR | Zbl

[31] K. Mahler, “Applications of some formulae by Hermite to the approximation of exponentials and logarithms”, Math. Ann., 168 (1967), 372–399 | DOI | MR

[32] H. Padé, “Mémoire sur les développement en fractions continues de la fonction exponential”, Ann. Sci., Ecole Normale Sup. (3), 16 (1899), 395–426 | DOI | MR

[33] H. Stahl, “Asymptotics for quadratic Hermite–Padé polynomals associated with the exponential function”, Electron. Trans. Num. Anal., 14 (2002), 195–222 | MR | Zbl

[34] W. Van Assche, “Multiple orthogonal polynomials, irrationality and transcedence”, Continued fractions: from analytic number theory to constructive approximation (Columbia, MO, USA. 1998), Contemp. Math., 236, AMS, Providence, RI, 1999, 325–342 | DOI | MR