Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MMO_2021_82_2_a3, author = {M. A. Stepanova}, title = {CR-manifolds of infinite type in the sense of {Bloom} and {Graham}}, journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva}, pages = {349--368}, publisher = {mathdoc}, volume = {82}, number = {2}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MMO_2021_82_2_a3/} }
M. A. Stepanova. CR-manifolds of infinite type in the sense of Bloom and Graham. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 82 (2021) no. 2, pp. 349-368. http://geodesic.mathdoc.fr/item/MMO_2021_82_2_a3/
[1] V. K. Beloshapka, “Veschestvennye podmnogoobraziya kompleksnogo prostranstva: ikh polinomialnye modeli, avtomorfizmy i problemy klassifikatsii”, UMN, 57:1 (343) (2002), 3–44 | MR | Zbl
[2] M. A. Stepanova, “Modifikatsiya teoremy Bluma–Grema: vvedenie vesov v kompleksnom kasatelnom prostranstve”, Tr. MMO, 79, no. 2, 2018, 237–246 | Zbl
[3] M. S. Baouendi, P. Ebenfelt, L. P. Rothschild, Real submanifolds in complex space and their mappings, Princeton Univ. Press, Princeton, NJ, 1999 | MR | Zbl
[4] V. K. Beloshapka, Can a stabilizer be eight-dimensional?, Russ. J. Math. Phys., 19:2 (2012), 135–145 | DOI | MR | Zbl
[5] V. K. Beloshapka, “CR" manifolds of finite Bloom–Graham type: the model surface method”, Russ. J. Math. Phys., 27 (2020), 155–174 | DOI | MR | Zbl
[6] Th. Bloom, I. Graham, “On ‘type’ conditions for generic real submanifolds of $\mathbb{C}^n$”, Invent. Math., 40 (1977), 217–243 | DOI | MR
[7] S. S. Chern, J. K. Moser, “Real hypersurfaces in complex manifold”, Acta Math., 133:3–4 (1974), 219–271 | DOI | MR