Holomorphic solutions of soliton equations
Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 82 (2021) no. 2, pp. 227-312.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MMO_2021_82_2_a0,
     author = {A. V. Domrin},
     title = {Holomorphic solutions of soliton equations},
     journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {227--312},
     publisher = {mathdoc},
     volume = {82},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MMO_2021_82_2_a0/}
}
TY  - JOUR
AU  - A. V. Domrin
TI  - Holomorphic solutions of soliton equations
JO  - Trudy Moskovskogo matematičeskogo obŝestva
PY  - 2021
SP  - 227
EP  - 312
VL  - 82
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MMO_2021_82_2_a0/
LA  - ru
ID  - MMO_2021_82_2_a0
ER  - 
%0 Journal Article
%A A. V. Domrin
%T Holomorphic solutions of soliton equations
%J Trudy Moskovskogo matematičeskogo obŝestva
%D 2021
%P 227-312
%V 82
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MMO_2021_82_2_a0/
%G ru
%F MMO_2021_82_2_a0
A. V. Domrin. Holomorphic solutions of soliton equations. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 82 (2021) no. 2, pp. 227-312. http://geodesic.mathdoc.fr/item/MMO_2021_82_2_a0/

[1] E. L. Ains, Obyknovennye differentsialnye uravneniya, ONTI, Kharkov, 1939

[2] L. Bers, F. Dzhon, M. Shekhter, Uravneniya s chastnymi proizvodnymi, Mir, M., 1966

[3] A. A. Bolibrukh, Obratnye zadachi monodromii v analiticheskoi teorii differentsialnykh uravnenii, MTsNMO, M., 2009

[4] N. P. Vekua, Sistemy singulyarnykh integralnykh uravnenii i nekotorye granichnye zadachi, Nauka, M., 1970 | MR

[5] A. O. Gelfond, Ischislenie konechnykh raznostei, Nauka, M., 1967 | MR

[6] I. Ts. Gokhberg, “O lineinykh operatorakh, analiticheski zavisyaschikh ot parametra”, DAN SSSR, 78:4 (1951), 629–632 | Zbl

[7] E. Gursa, Kurs matematicheskogo analiza, GTTI, M.–L., 1933–1934

[8] R. Dodd, Dzh. Eilbek, Dzh. Gibbon, Kh. Morris, Solitony i nelineinye volnovye uravneniya, Mir, M., 1988 | MR

[9] A. V. Domrin, “Zadacha Rimana i matrichnoznachnye potentsialy so skhodyascheisya funktsiei Beikera–Akhiezera”, TMF, 144:3 (2005), 453–471 | MR | Zbl

[10] A. V. Domrin, “Zamechaniya o lokalnom variante metoda obratnoi zadachi rasseyaniya”, Tr. MIAN, 253, 2006, 46–40

[11] A. V. Domrin, A. V. Domrina, “O raskhodimosti ryada Kontsevicha–Vittena”, UMN, 63:4 (2008), 185–186 | MR | Zbl

[12] A. V. Domrin, “Meromorfnoe prodolzhenie reshenii solitonnykh uravnenii”, Izv. RAN. Ser. matem., 74:3 (2010), 23–44 | MR | Zbl

[13] A. V. Domrin, “O golomorfnykh resheniyakh uravnenii tipa Kortevega–de Friza”, Tr. MMO, 73, no. 2, 2012, 241–257 | Zbl

[14] A. V. Domrin, Golomorfnye resheniya solitonnykh uravnenii, Diss. na soiskanie uch. stepeni dokt. fiz.-mat. nauk, MGU, M., 2013

[15] V. G. Drinfeld, V. V. Sokolov, “Algebry Li i uravneniya tipa Kortevega–de Friza”, Itogi nauki i tekhn. Sovrem. probl. mat., 24, VINITI, M., 1984, 81–180

[16] Yu. A. Dubinskii, Zadacha Koshi v kompleksnoi oblasti, Izd-vo MEI, M., 1996

[17] B. A. Dubrovin, “Vpolne integriruemye gamiltonovy sistemy, svyazannye s matrichnymi operatorami, i abelevy mnogoobraziya”, Funkts. analiz i ego pril., 11:4 (1977), 28–41 | MR | Zbl

[18] B. A. Dubrovin, I. M. Krichever, S. P. Novikov, “Integriruemye sistemy. I”, Dinamicheskie sistemy–4, Itogi nauki i tekhn. Sovrem. probl. mat. Fundam. napravl., 4, VINITI, M., 1985, 179–278

[19] V. E. Zakharov, S. V. Manakov, S. P. Novikov, L. P. Pitaevskii, Teoriya solitonov. Metod obratnoi zadachi rasseyaniya, Nauka, M., 1980 | MR

[20] V. E. Zakharov, A. B. Shabat, “Tochnaya teoriya dvumernoi samofokusirovki i odnomernoi avtomodulyatsii voln v nelineinykh sredakh”, ZhETF, 61:1 (1971), 118–134 | MR

[21] V. E. Zakharov, A. B. Shabat, “Integrirovanie nelineinykh uravnenii matematicheskoi fiziki metodom obratnoi zadachi rasseyaniya. II”, Funkts. analiz i ego pril., 13:3 (1979), 13–22 | MR

[22] A. K. Zvonkin, S. K. Lando, Grafy na poverkhnostyakh i ikh prilozheniya, MTsNMO, M., 2010

[23] T. Kato, Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR

[24] A. V. Komlov, “Otsenki klassov Zhevreya dannykh rasseyaniya dlya polinomialnykh potentsialov”, UMN, 63:4 (2008), 189–190 | MR | Zbl

[25] R. Kont, M. Myuzett, Metod Penleve i ego prilozheniya, RKhD, M.–Izhevsk, 2011

[26] Yu. F. Korobeinik, “Predstavlyayuschie sistemy eksponent i zadacha Koshi dlya uravnenii v chastnykh proizvodnykh s postoyannymi koeffitsientami”, Izv. RAN. Ser. matem., 61:3 (1997), 91–132 | MR | Zbl

[27] I. M. Krichever, “Analog formuly Dalambera dlya uravnenii glavnogo kiralnogo polya i uravneniya sine-Gordon”, DAN SSSR, 253:2 (1980), 288–292 | MR | Zbl

[28] I. M. Krichever, “Nelineinye uravneniya i ellipticheskie krivye”, Itogi nauki i tekhn. Sovrem. probl. mat., 23, VINITI, M., 1983, 79–136

[29] N. A. Kudryashov, Analiticheskaya teoriya nelineinykh differentsialnykh uravnenii, IKI, M.–Izhevsk, 2004

[30] R. Kurant, Uravneniya s chastnymi proizvodnymi, Mir, M., 1964

[31] S. Leng, $\operatorname{SL}_2(\mathbb{R})$, Mir, M., 1977

[32] A. F. Leontev, Tselye funktsii. Ryady eksponent, Nauka, M., 1983 | MR

[33] S. P. Novikov, “Periodicheskaya zadacha dlya uravneniya Kortevega–de Friza. I”, Funkts. analiz i ego pril., 8:3 (1974), 54–66 | MR | Zbl

[34] O. A. Oleinik, “Teorema S. V. Kovalevskoi i sovremennaya teoriya uravnenii s chastnymi proizvodnymi”, Sorosovskii obrazovatelnyi zhurnal, 8 (1997), 116–121 | Zbl

[35] A. N. Parshin, “K glave X «Problema Rimana v teorii funktsii kompleksnogo peremennogo»”, D. Gilbert. Izbrannye trudy, v. II, Faktorial, M., 1998, 535–538

[36] Pisma Karla Veiershtrassa k Sofe Kovalevskoi, Nauka, M., 1973

[37] V. P. Potapov, “Multiplikativnaya struktura $J$-nerastyagivayuschikh matrits-funktsii”, Trudy MMO, 4, 1955, 125–236 | Zbl

[38] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki, v. IV, Analiz operatorov, Mir, M., 1982 | MR

[39] G. S. Salekhov, “O zadache Koshi–Kovalevskoi dlya odnogo klassa lineinykh uravnenii s chastnymi proizvodnymi v oblasti skol ugodno gladkikh funktsii”, Izv. AN SSSR. Ser. matem., 14:4 (1950), 355–366 | Zbl

[40] G. S. Salekhov, V. R. Fridlender, “K voprosu o zadache, obratnoi zadache Koshi–Kovalevskoi”, UMN, 7:5 (1952), 169–192 | MR

[41] L. A. Takhtadzhyan, L. D. Faddeev, Gamiltonov podkhod v teorii solitonov, Nauka, M., 1986 | MR

[42] F. Uorner, Osnovy teorii gladkikh mnogoobrazii i grupp Li, Mir, M., 1987 | MR

[43] O. Forster, Rimanovy poverkhnosti, Mir, M., 1980

[44] L. Khermander, Analiz lineinykh differentsialnykh operatorov s chastnymi proizvodnymi, v. 1, Mir, M., 1986

[45] B. V. Shabat, Vvedenie v kompleksnyi analiz, v. II, Nauka, M., 1985 | MR

[46] G. E. Shilov, Matematicheskii analiz. Vtoroi spetsialnyi kurs, Nauka, M., 1965 | MR

[47] D. R. Yafaev, Matematicheskaya teoriya rasseyaniya, Izd-vo SPbGU, SPb., 1994

[48] M. Ablowitz, R. Haberman, “Resonantly coupled nonlinear evolution equations”, J. Math. Phys., 16:11 (1975), 2301–2305 | DOI | MR

[49] M. J. Ablowitz, D. J. Kaup, A. C. Newell, H. Segur, “The inverse scattering transform — Fourier analysis for nonlinear problems”, Stud. in Appl. Math., 53:4 (1974), 249–315 | DOI | MR | Zbl

[50] E. Arbarello, M. Cornalba, Ph. Griffiths, Geometry of algebraic curves, v. II, Grundlehren der Mathematischen Wissenschaften, 268, Springer, Heidelberg, 2011 | DOI | MR | Zbl

[51] R. Beals, P. Deift, X. Zhou, “The inverse scattering transform on the line”, Important developments of soliton theory, Springer, Berlin, 1993, 7–32 | DOI | MR | Zbl

[52] G. D. Birkhoff, “The generalized Riemann problem for linear differential equations and the allied problems for linear difference and $q$-difference equations”, Proc. Amer. Acad. Arts Sci., 49 (1913), 521–568 ; Reprinted in: Birkhoff G. D., Collected mathematical papers, v. I, AMS, NY, 1950, 259–306 | DOI | MR | Zbl

[53] A.-L. Cauchy, “Mémoire sur les systèmes d'equations aux dérivées partielles d'ordre quelconque et sur leur réduction à systèmes d'equations linéaires du premier ordre”, C. R. Acad. Sci. Paris, 40 (1842), 131–138

[54] K. Clancey, I. Gohberg, Factorization of matrix functions and singular integral operators, Operator Theory: Advances and Applications, 3, Birkhäuser, Basel–Boston, Mass., 1981 | MR | Zbl

[55] A. Cohen, T. Kappeler, “Non-uniqueness for solutions of the Korteweg–de Vries equation”, Trans. Amer. Math. Soc., 312:2 (1989), 819–840 | MR | Zbl

[56] L. A. Dickey, Soliton equations and Hamiltonian systems, Adv. Ser. Math. Phys., 26, World Scientific, Singapore, 2003 | DOI | MR | Zbl

[57] J. J. Duistermaat, F. A. Grünbaum, “Differential equations in the spectral parameter”, Comm. Math. Phys., 103:2 (1986), 177–240 | DOI | MR | Zbl

[58] M. Gevrey, “Sur la nature analytique des solutions des équations aux dérivées partielles. Premier mémoire”, Ann. Sci. Ec. Norm. Sup. (3), 35 (1918), 129–190 | DOI | MR | Zbl

[59] R. Gérard, H. Tahara, Singular nonlinear partial differential equations, Vieweg, Braunschweig, 1996 | MR | Zbl

[60] G. Haak, M. Schmidt, R. Schrader, “Group theoretic formulation of the Segal–Wilson approach to integrable systems with applications”, Rev. Math. Phys., 4:3 (1992), 451–499 | DOI | MR | Zbl

[61] H. Hannach, A. A. Himonas, G. Petronilho, “Gevrey regularity in time for generalized KdV type equations”, Recent progress on some problems in several complex variables and partial differential equations, Contemp. Math., 400, eds. S. Berhanu et al., Amer. Math. Soc., Providence, RI, 2006, 117–127 | DOI | MR

[62] N. Hayashi, K. Kato, “Regularity in time of solutions to nonlinear Schrödinger equations”, J. Funct. Anal., 128:2 (1995), 253–277 | DOI | MR | Zbl

[63] G. M. Henkin, “Jean Leray and several complex variables”: J. Leray, Oeuvres Scientifiques, v. III, Springer-Verlag and SMF, Berlin–Paris, 1998, 1–31 | MR

[64] E. Holmgren, “Sur l'équation de la propagation de la chaleur”, Arkiv Mat. Astr. Pys., 4:14 (1908), 1–11

[65] E. Hopf, “The partial differential equation $u_t+uu_{x}=\mu u_{xx}$”, Comm. Pure Appl. Math., 3:3 (1950), 201–230 | DOI | MR | Zbl

[66] P.-F. Hsieh, Y. Sibuya, Basic theory of ordinary differential equations, Springer-Verlag, NY, 1999 | MR | Zbl

[67] N. Joshi, J. A. Petersen, L. M. Schubert, “Nonexistence results for the Korteweg–de Vries and Kadomtsev–Petviashvili equations”, Stud. Appl. Math., 105:4 (2000), 361–374 | DOI | MR | Zbl

[68] D. Khavinson, E. Lundberg, Linear holomorphic partial differential equations and classical potential theory, Mathematical Surveys and Monographs, 232, Amer. Math. Soc., Providence, RI, 2018 | DOI | MR | Zbl

[69] D. Khavinson, H. S. Shapiro, “The heat equation and analytic continuation: Ivar Fredholm's first paper”, Expo Math., 12:1 (1994), 79–95 | MR | Zbl

[70] S. Kichenassamy, Fuchsian reduction, Birkhäuser, Boston, MA, 2007 | MR | Zbl

[71] C. Kiselman, “Prolongement des solutions d'une équation aux dérivées partielles à coefficients constants”, Bull. Soc. Math. France, 97 (1969), 329–356 | DOI | MR | Zbl

[72] M. Kontsevich, “Intersection theory on the moduli space of curves and the matrix Airy function”, Comm. Math. Phys., 47:1 (1992), 1–23 | DOI | MR

[73] S. von Kowalevsky, Zur Theorie der partiellen Differentialgleichungen, Inaugural Dissertation zur erlangung der Doctorwürde bei der Philosophischen Facultät zu Göttingen, Georg Reimer, Berlin, 1874; J. reine angew. Math., 80 (1875), 1–32 | MR

[74] M. D. Kruskal, N. Joshi, R. Halburd, “Analytic and asymptotic methods for nonlinear singularity analysis: a review and extension of tests for the Painlevé property”, Integrability of nonlinear systems, Lect. Notes Phys., 638, 2004, 175–208 | DOI

[75] J. Leray, “Problème de Cauchy. I. Uniformisation de la solution du problème linéaire analytique de Cauchy près de la variété qui porte les données de Cauchy”, Bull. Soc. Math. France, 85 (1957), 389–429 | DOI | MR | Zbl

[76] J. Le Roux, “Sur les intégrales analytiques de l'équation $\partial^2z/\partial y^2=\partial z/\partial x$”, Bull. Sci. Math., 19 (1895), 127–128

[77] F. Linares, G. Ponce, Introduction to nonlinear dispersive equations, Springer, NY, 2009 | MR | Zbl

[78] B. Malgrange, “Sur les déformations isomonodromiques. I. Singularités régulières”, Mathematics and physics (Paris, 1979/1982), Progr. in Math., 37, Birkhäuser, Boston, MA, 1983, 401–426 | MR

[79] B. Malgrange, “Sur le théorème de Maillet”, Asymptotic anal., 2:1 (1989), 1–4 | DOI | MR | Zbl

[80] J. B. McLeod, P. J. Olver, “The connection between partial differential equations soluble by inverse scattering and ordinary differential equations of Painlevé type”, SIAM J. Math. Anal., 14:3 (1983), 488–506 | DOI | MR | Zbl

[81] G. Mittag-Leffler, “Sur une transcendante remarquable trouvée par M. Fredholm”, Acta Math., 15 (1891), 279–280 | DOI | MR

[82] C. Moussy, “Théorème du point fixe et théorèms de Cauchy–Kowalewsky–Lednev pour les systèmes semi-linéaires”, Ann. Fac. Sci. Tolouse, 8:3 (1999), 491–535 | DOI | MR | Zbl

[83] J. Persson, “Some results on classical solutions of the equation $D^m_tu=x^qD^n_xu$, $m$”, Boll. Un. Mat. Ital. Ser. IV, 3 (1970), 426–440 | MR | Zbl

[84] P. Remy, Gevrey index theorems for some inhomogeneous semilinear partial differential equations with variable coefficients, HAL Archives-ouvertes, 2019 https://hal.archives-ouvertes.fr/hal-02263353

[85] S. Rigat, “Application of functional calculus to complex Cauchy problems”, Comput. Meth. Funct. Theory, 7:2 (2007), 509–526 | DOI | MR | Zbl

[86] L. Rodino, Linear partial differential operators in Gevrey spaces, World Sci, River Edge, NJ, 1993 | MR | Zbl

[87] A. Rybkin, “The Hirota $\tau$-function and well-posedness of the KdV equation with an arbitrary step-like initial profile decaying on the right half-line”, Nonlinearity, 24:10 (2011), 2953–2990 | DOI | MR | Zbl

[88] D. H. Sattinger, J. S. Szmigielski, “Factorization and the dressing method for the Gel'fand–Dikii hierarchy”, Phys. D, 64:1-3 (1993), 1–34 | DOI | MR | Zbl

[89] P. Schapira, “Sheaves: from Leray to Grothendieck and Sato”, Sémin. Congr., 9 (2004), 173–183 | MR | Zbl

[90] R. Schäfke, “A majorant method for differential equations with a singular parameter”, Trends and developments in ordinary differential equations, World Scientific, Singapore, 1994, 283–292 | Zbl

[91] M. U. Schmidt, Integrable systems and Riemann surfaces of infinite genus, Mem. Amer. Math. Soc., 122, no. 581, Amer. Math. Soc., Providence, RI, 1996 | MR

[92] G. Segal, G. Wilson, “Loop groups and equations of KdV type”, Publ. Math. IHES, 61 (1985), 5–65 | DOI | MR | Zbl

[93] Y. Sibuya, Linear differential equations in the complex domain: problems of analytic continuation, Amer. Math. Soc., Providence, RI, 1990 | MR | Zbl

[94] H. Tahara, “On the singularities of solutions of nonlinear partial differential equations in the complex domain”, Microlocal analysis and asymptotic analysis, RIMS Kôkyûroku, 1397, 2004, 102–111 | MR

[95] C.-L. Terng, K. Uhlenbeck, “Bäcklund transformations and loop group actions”, Comm. Pure Appl. Math., 53 (2000), 1–75 | 3.0.CO;2-U class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[96] G. Wilson, “The $\tau$-functions of the $\mathfrak g$AKNS equations”, Integrable systems, Progr. Math., 115, Birkhäuser, Boston, MA, 1993, 131–134 | MR

[97] E. Witten, “Two-dimensional gravity and intersection theory on moduli space”, Surveys in differential geometry (Cambridge, MA, 1990), Lehigh Univ., Bethlehem, PA, 1991, 243–310 | MR

[98] M. Zerner, “Domaines d'holomorphie des fonctions vérifiant une équation aux dérivées partielles”, C. R. Acad. Sci. Paris, 272 (1971), 1646–1648 | MR | Zbl

[99] X. Zhou, “Zakharov–Shabat inverse scattering”, Scattering, Academic Press, San Diego, 2002, 1707–1716 | DOI