Tiling billiards and Dynnikov's helicoid
Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 82 (2021) no. 1, pp. 157-174.

Voir la notice de l'article provenant de la source Math-Net.Ru

Here are two problems. First, understand the dynamics of a tiling billiard in a cyclic quadrilateral periodic tiling. Second, describe the topology of connected components of plane sections of a centrally symmetric subsurface $S \subset \mathbb{T}^3$ of genus $3$. In this note we show that these two problems are related via a helicoidal construction proposed recently by Ivan Dynnikov. The second problem is a particular case of a classical question formulated by Sergei Novikov. The exploration of the relationship between a large class of tiling billiards (periodic locally foldable tiling billiards) and Novikov's problem in higher genus seems promising, as we show in the end of this note.
@article{MMO_2021_82_1_a8,
     author = {O. Paris-Romaskevich},
     title = {Tiling billiards and {Dynnikov's} helicoid},
     journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {157--174},
     publisher = {mathdoc},
     volume = {82},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MMO_2021_82_1_a8/}
}
TY  - JOUR
AU  - O. Paris-Romaskevich
TI  - Tiling billiards and Dynnikov's helicoid
JO  - Trudy Moskovskogo matematičeskogo obŝestva
PY  - 2021
SP  - 157
EP  - 174
VL  - 82
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MMO_2021_82_1_a8/
LA  - en
ID  - MMO_2021_82_1_a8
ER  - 
%0 Journal Article
%A O. Paris-Romaskevich
%T Tiling billiards and Dynnikov's helicoid
%J Trudy Moskovskogo matematičeskogo obŝestva
%D 2021
%P 157-174
%V 82
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MMO_2021_82_1_a8/
%G en
%F MMO_2021_82_1_a8
O. Paris-Romaskevich. Tiling billiards and Dynnikov's helicoid. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 82 (2021) no. 1, pp. 157-174. http://geodesic.mathdoc.fr/item/MMO_2021_82_1_a8/

[1] Aichholzer O., Aurenhammer F., Alberts D., Gärtner B., “A novel type of skeleton for polygons”, J. Univ. Comp. Sci., 1:12 (1995), 752–761 | MR

[2] Arnoux P., Rauzy G., “Représentation géométrique de suites de complexité $2n+1$”, Bull. Soc. Math. France, 119:2 (1991), 199–215 | DOI | MR | Zbl

[3] Arnoux P., Starosta Š., “The Rauzy gasket”, Further developments in fractals and related fields, Trends Math., Birkhäuser/Springer, New York, 2013, 1–23 | MR | Zbl

[4] “Avila A., Hubert P., Skripchenko A.”, Bull. Soc. Math. France, 144:3 (2016), 539–568 | DOI | MR | Zbl

[5] P. Baird-Smith, D. Davis, E. Fromm, S. Iyer, “Tiling billards on triangle tilings, and interval exchange transformations”, Bull. London Math. Soc., 2020 | Zbl

[6] “Baragar A.”, Pacific J. Math., 182:1 (1998), 1–21 | DOI | MR

[7] D. Davis, K. DiPietro, J. T. Rustad, A. St. Laurent, “Negative refraction and tiling billiards”, Adv. Geom., 18:2 (2018), 133–159 | DOI | MR | Zbl

[8] D. Davis, W. P. Hooper, “Periodicity and ergodicity in the trihexagonal tiling”, Comment. Math. Helv., 93:4 (2018), 661–707 | DOI | MR | Zbl

[9] “DeLeo R., Dynnikov I. A.”, Geom. Dedicata, 138 (2009), 51–67 | DOI | MR | Zbl

[10] Demaine E. D., O'Rourke J., Geometric folding algorithms. Linkages, origami, polyhedra, Cambridge Univ. Press, Cambridge, 2007 | MR | Zbl

[11] “Dynnikov I.”, Russian Math. Surveys, 54:1 (1999), 21–59 | DOI | MR

[12] I. Dynnikov, P. Hubert, P. Mercat, O. Paris-Romaskevich, A. Skripchenko, Novikov's gasket has Lebesgue measure zero, Preprint, 2020 | Zbl

[13] Dynnikov I., Hubert P., Skripchenko A., Dynamical systems around the Rauzy gasket and their ergodic properties, Preprint, 2020 | Zbl

[14] Dynnikov I., Skripchenko A., “Symmetric band complexes of thin type and chaotic sections which are not quite chaotic”, Trans. MMS, 2015, 251–269 | MR | Zbl

[15] Fougeron C., Dynamical properties of simplicial systems and continued fraction algorithms, 2020, arXiv: 2001.01367

[16] A. Gamburd, M. Magee, R. Ronan, “An asymptotic formula for integer points on Markoff–Hurwitz varieties”, Ann. of Math. (2), 190:3 (2019), 751–809 | DOI | MR | Zbl

[17] “R. Gutiérrez-Romo, C. Matheus”, Bull. Soc. Math. France, 148:2 (2020), 321–327 | DOI | MR | Zbl

[18] P. Hubert, O. Paris-Romaskevich, “Triangle tiling billiards and the exceptional family of their escaping trajectories: circumcenters and Rauzy gasket”, Experimental Mathematics, 2019, 1–30 | MR

[19] R. Kenyon, W. Lam, S. Ramassamy, M. Russkikh, Dimers and circle patterns, 2018, arXiv: 1810.05616

[20] R. Kenyon, A. Okounkov, S. Sheffield, “Dimers and amoebae”, Ann. of Math. (2), 163:3 (2006), 1019–1056 | DOI | MR | Zbl

[21] R. Meester, T. Nowicki, “Infinite clusters and critical values in two-dimensional circle percolation”, Israel J. Math., 68:1 (1989), 63–81 | DOI | MR | Zbl

[22] S. P. Novikov, R. De Leo, I. A. Dynnikov, A. Mal'tsev, “Theory of dynamical systems and transport phenomena in normal metals”, J. Exp. Theor. Phys., 129:4 (2019), 710–721 | DOI

[23] S. P. Novikov, I. A. Dynnikov, “Topology of quasiperiodic functions on the plane”, Russian Math. Surveys, 60:1 (2005), 1–26 | DOI | MR | Zbl

[24] Paris-Romaskevich O., Trees and flowers on a billiard table, , 2019 https://hal.archives-ouvertes.fr/hal-02169195 | Zbl

[25] “Zorich A.”, Math. USSR-Izv., 31:3 (1988), 635–655 | DOI | MR | Zbl