Tiling billiards and Dynnikov's helicoid
Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 82 (2021) no. 1, pp. 157-174

Voir la notice de l'article provenant de la source Math-Net.Ru

Here are two problems. First, understand the dynamics of a tiling billiard in a cyclic quadrilateral periodic tiling. Second, describe the topology of connected components of plane sections of a centrally symmetric subsurface $S \subset \mathbb{T}^3$ of genus $3$. In this note we show that these two problems are related via a helicoidal construction proposed recently by Ivan Dynnikov. The second problem is a particular case of a classical question formulated by Sergei Novikov. The exploration of the relationship between a large class of tiling billiards (periodic locally foldable tiling billiards) and Novikov's problem in higher genus seems promising, as we show in the end of this note.
@article{MMO_2021_82_1_a8,
     author = {O. Paris-Romaskevich},
     title = {Tiling billiards and {Dynnikov's} helicoid},
     journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {157--174},
     publisher = {mathdoc},
     volume = {82},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MMO_2021_82_1_a8/}
}
TY  - JOUR
AU  - O. Paris-Romaskevich
TI  - Tiling billiards and Dynnikov's helicoid
JO  - Trudy Moskovskogo matematičeskogo obŝestva
PY  - 2021
SP  - 157
EP  - 174
VL  - 82
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MMO_2021_82_1_a8/
LA  - en
ID  - MMO_2021_82_1_a8
ER  - 
%0 Journal Article
%A O. Paris-Romaskevich
%T Tiling billiards and Dynnikov's helicoid
%J Trudy Moskovskogo matematičeskogo obŝestva
%D 2021
%P 157-174
%V 82
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MMO_2021_82_1_a8/
%G en
%F MMO_2021_82_1_a8
O. Paris-Romaskevich. Tiling billiards and Dynnikov's helicoid. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 82 (2021) no. 1, pp. 157-174. http://geodesic.mathdoc.fr/item/MMO_2021_82_1_a8/