Tiling billiards and Dynnikov's helicoid
Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 82 (2021) no. 1, pp. 157-174
Voir la notice de l'article provenant de la source Math-Net.Ru
Here are two problems. First, understand the dynamics of a tiling billiard in a cyclic quadrilateral periodic tiling. Second, describe the topology of connected components of plane sections of a centrally symmetric subsurface $S \subset \mathbb{T}^3$ of genus $3$. In this note we show that these two problems are related via a helicoidal construction proposed recently by Ivan Dynnikov. The second problem is a particular case of a classical question formulated by Sergei Novikov. The exploration of the relationship between a large class of tiling billiards (periodic locally foldable tiling billiards) and Novikov's problem in higher genus seems promising, as we show in the end of this note.
@article{MMO_2021_82_1_a8,
author = {O. Paris-Romaskevich},
title = {Tiling billiards and {Dynnikov's} helicoid},
journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva},
pages = {157--174},
publisher = {mathdoc},
volume = {82},
number = {1},
year = {2021},
language = {en},
url = {http://geodesic.mathdoc.fr/item/MMO_2021_82_1_a8/}
}
O. Paris-Romaskevich. Tiling billiards and Dynnikov's helicoid. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 82 (2021) no. 1, pp. 157-174. http://geodesic.mathdoc.fr/item/MMO_2021_82_1_a8/