On Mealy--Moore coding and images of Markov measures
Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 82 (2021) no. 1, pp. 105-135.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the images of the Markov measures under transformations generated by the Mealy automata. We find conditions under which the image measure is absolutely continuous or singular relative to the Markov measure. Also, we determine statistical properties of the image of a generic sequence.
@article{MMO_2021_82_1_a5,
     author = {R. Grigorchuk and R. Kogan and Ya. Vorobets},
     title = {On {Mealy--Moore} coding and images of {Markov} measures},
     journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {105--135},
     publisher = {mathdoc},
     volume = {82},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MMO_2021_82_1_a5/}
}
TY  - JOUR
AU  - R. Grigorchuk
AU  - R. Kogan
AU  - Ya. Vorobets
TI  - On Mealy--Moore coding and images of Markov measures
JO  - Trudy Moskovskogo matematičeskogo obŝestva
PY  - 2021
SP  - 105
EP  - 135
VL  - 82
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MMO_2021_82_1_a5/
LA  - en
ID  - MMO_2021_82_1_a5
ER  - 
%0 Journal Article
%A R. Grigorchuk
%A R. Kogan
%A Ya. Vorobets
%T On Mealy--Moore coding and images of Markov measures
%J Trudy Moskovskogo matematičeskogo obŝestva
%D 2021
%P 105-135
%V 82
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MMO_2021_82_1_a5/
%G en
%F MMO_2021_82_1_a5
R. Grigorchuk; R. Kogan; Ya. Vorobets. On Mealy--Moore coding and images of Markov measures. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 82 (2021) no. 1, pp. 105-135. http://geodesic.mathdoc.fr/item/MMO_2021_82_1_a5/

[1] L. Bartholdi, R. Grigorchuk, V. Nekrashevych, “From fractal groups to fractal sets”, Fractals in Graz, Trends Math., Birkhäuser, Basel, 2001, 25–118 | MR

[2] I. Bondarenko, R. Grigorchuk, R. Kravchenko, Y. Muntyan, V. Nekrashevych, D. Savchuk, Z. Šunić, “On classification of groups generated by 3-state automata over a 2-letter alphabet”, Algebra Discrete Math., 2008, no. 1, 1–163 | MR | Zbl

[3] P. Billingsley, Ergodic theory and information, John Wiley Sons, New York–London–Sydney, 1965 | MR | Zbl

[4] M. Boyle, K. Petersen, “Hidden Markov processes in the context of symbolic dynamics”, Entropy of hidden Markov processes and connections to dynamical systems, London Math. Soc. Lecture Note Ser., 385, Cambridge Univ. Press, Cambridge, 2011, 5–71 | MR | Zbl

[5] A. Dudko, R. Grigorchuk, “On spectra of Koopman, groupoid and quasi-regular representations”, J. Mod. Dyn., 11 (2017), 99–123 | DOI | MR | Zbl

[6] R. Grigorchuk, R. Kogan, Y. Vorobets, Automatic logarithm and associated measures, 2019, arXiv: 1812.00069 | Zbl

[7] R. I. Grigorchuk, V. V. Nekrashevych, V. I. Sushchanskii, “Automata, dynamical systems, and groups”, Proc. Steklov Inst. Math., 231:4 (2000), 128–203 | MR | Zbl

[8] R. Kravchenko, “The action of finite-state tree automorphisms on Bernoulli measures”, J. Mod. Dyn., 4:3 (2010), 443–451 | DOI | MR | Zbl

[9] V. B. Kudryavtsev, S. V. Aleshin, A. S. Podkolzin, Introduction to automata theory, Nauka, M., 1985 (Russian) | MR | Zbl

[10] V. Nekrashevych, Self-similar groups, Mathematical Surveys and Monographs, 117, Amer. Math. Soc., Providence, RI, 2005 | DOI | MR | Zbl

[11] A. V. Ryabinin, “Stochastic functions of finite automata”, Algebra, logic and number theory, Moskov. Gos. Univ., M., 1986, 77–80 (Russian) | MR

[12] S. Sidki, “Automorphisms of one-rooted trees: Growth, circuit structure, and acyclicity”, J. Math. Sci. (New York), 100 (2000), 1925–1943 | DOI | MR | Zbl