Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MMO_2021_82_1_a4, author = {Vassili N. Kolokoltsov}, title = {On a probabilistic derivation of the basic particle statistics {(Bose--Einstein,} {Fermi--Dirac,} canonical, grand-canonical, intermediate) and related distributions}, journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva}, pages = {93--104}, publisher = {mathdoc}, volume = {82}, number = {1}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/MMO_2021_82_1_a4/} }
TY - JOUR AU - Vassili N. Kolokoltsov TI - On a probabilistic derivation of the basic particle statistics (Bose--Einstein, Fermi--Dirac, canonical, grand-canonical, intermediate) and related distributions JO - Trudy Moskovskogo matematičeskogo obŝestva PY - 2021 SP - 93 EP - 104 VL - 82 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MMO_2021_82_1_a4/ LA - en ID - MMO_2021_82_1_a4 ER -
%0 Journal Article %A Vassili N. Kolokoltsov %T On a probabilistic derivation of the basic particle statistics (Bose--Einstein, Fermi--Dirac, canonical, grand-canonical, intermediate) and related distributions %J Trudy Moskovskogo matematičeskogo obŝestva %D 2021 %P 93-104 %V 82 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MMO_2021_82_1_a4/ %G en %F MMO_2021_82_1_a4
Vassili N. Kolokoltsov. On a probabilistic derivation of the basic particle statistics (Bose--Einstein, Fermi--Dirac, canonical, grand-canonical, intermediate) and related distributions. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 82 (2021) no. 1, pp. 93-104. http://geodesic.mathdoc.fr/item/MMO_2021_82_1_a4/
[1] D. Aerts, S. Sozzo, T. Veloz, “The quantum nature of identity in human thought: Bose–Einstein statistics for conceptual indistinguishability”, Internat. J. Theoret. Phys., 54 (2015), 4430–4443 | DOI | MR | Zbl
[2] T. H. Boyer, “Blackbody radiation in classical physics: A historical perspective”, Amer. J. Phys., 86:7 (2018), 495–509 | DOI | MR
[3] M. Cattani, J. M. F. Bassalo, Intermediate statistics, parastatistics, fractionary statistics and gentilionic statistics, arXiv: 0903.4773
[4] D. G. Champernowne, “A model of income distribution”, Econ. J., 63:250 (1953), 318–351 | DOI
[5] D. Costantini, U. Garibaldi, “A probabilistic foundation of elementary particle statistics. Part I”, Stud. Hist. Phil. Mod. Phys., 28:4 (1997), 483–506 | DOI | MR | Zbl
[6] D. Costantini, U. Garibaldi, “A probabilistic foundation of elementary particle statistics. Part II”, Stud. Hist. Phil. Mod. Phys., 29:1 (1998), 37–59 | DOI | MR | Zbl
[7] U. Garibaldi, E. Scalas, Finitary probabilistic methods in econophysics, Cambridge University Press, Cambridge, 2010 | MR
[8] P. Gorroochurn, “The end of statistical independence: the story of Bose–Einstein statistics”, Math. Intelligencer., 40:3 (2018), 12–17 | DOI | MR | Zbl
[9] Y. Ijiri, H. A. Simon, “Some distributions associated with Bose–Einstein statistics”, Proc. Nat. Acad. Sci. USA, 72:5 (1975), 1654–1657 | DOI | MR
[10] A. I. Khinchin, Mathematical foundations of statistical mechanics, Dover, NY, 1949 | MR | Zbl
[11] L. D. Landau, E. M. Lifshitz, Statistical physics, v. 1, Elsevier, Amsterdam, 1980
[12] V. P. Maslov, “On a general theorem of set theory leading to the Gibbs, Bose–Einstein, and Pareto distributions as well as to the Zipf–Mandelbrot law for the stock market”, Math. Notes, 78:6 (2005), 807–813 | DOI | MR | Zbl
[13] V. P. Maslov, “Taking parastatistical corrections to the Bose–Einstein distribution into account in the quantum and classical cases”, Theor. Math. Phys., 172:3 (2012), 1289–1299 | DOI | MR | Zbl
[14] G. A. Miller, “Some effects of intermittent silence”, Am. J. Psychol., 70 (1957), 311–314 | DOI
[15] R. K. Niven, “Exact Maxwell–Boltzmann, Bose–Einstein and Fermi–Dirac statistics”, Phys. Lett. A, 342 (2005), 286–293 | DOI | MR | Zbl
[16] J. R. Persson, “Evolution of quasi-history of the Planck blackbody radiation equation in a physics textbook”, Amer. J. Phys., 86:12 (2018), 887–892 | DOI
[17] E. Scalas, A. T. Gabriel, E. Martin, G. Germano, “Velocity and energy distributions in microcanonical ensembles of hard spheres”, Phys. Rev. E, 92:2 (2015), 022140 | DOI | MR
[18] M. V. Simkin, V. P. Roychowdhury, “Re-inventing Willis”, Phys. Rep., 502:1 (2011), 1–35 | MR
[19] S. L. Zabell, “W. E. Johnson's 'sufficientness' postulate”, Ann. Stat., 10:4 (1982), 1091–1099 | DOI | MR | Zbl
[20] S. L. Zabell, “The continuum of inductive methods revisited”, The Cosmos of Science, Univ. Pittsburgh Press, 1997, 243–274