On a probabilistic derivation of the basic particle statistics (Bose--Einstein, Fermi--Dirac, canonical, grand-canonical, intermediate) and related distributions
Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 82 (2021) no. 1, pp. 93-104.

Voir la notice de l'article provenant de la source Math-Net.Ru

Combining intuitive probabilistic assumptions with the basic laws of classical thermodynamics, using the latter to express probabilistic parameters in terms of the thermodynamic quantities, we get a simple unified derivation of the fundamental ensembles of statistical physics avoiding any limiting procedures, quantum hypothesis and even statistical entropy maximization. This point of view leads also to some related classes of correlated particle statistics.
@article{MMO_2021_82_1_a4,
     author = {Vassili N. Kolokoltsov},
     title = {On a probabilistic derivation of the basic particle statistics {(Bose--Einstein,} {Fermi--Dirac,} canonical, grand-canonical, intermediate) and related distributions},
     journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {93--104},
     publisher = {mathdoc},
     volume = {82},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MMO_2021_82_1_a4/}
}
TY  - JOUR
AU  - Vassili N. Kolokoltsov
TI  - On a probabilistic derivation of the basic particle statistics (Bose--Einstein, Fermi--Dirac, canonical, grand-canonical, intermediate) and related distributions
JO  - Trudy Moskovskogo matematičeskogo obŝestva
PY  - 2021
SP  - 93
EP  - 104
VL  - 82
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MMO_2021_82_1_a4/
LA  - en
ID  - MMO_2021_82_1_a4
ER  - 
%0 Journal Article
%A Vassili N. Kolokoltsov
%T On a probabilistic derivation of the basic particle statistics (Bose--Einstein, Fermi--Dirac, canonical, grand-canonical, intermediate) and related distributions
%J Trudy Moskovskogo matematičeskogo obŝestva
%D 2021
%P 93-104
%V 82
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MMO_2021_82_1_a4/
%G en
%F MMO_2021_82_1_a4
Vassili N. Kolokoltsov. On a probabilistic derivation of the basic particle statistics (Bose--Einstein, Fermi--Dirac, canonical, grand-canonical, intermediate) and related distributions. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 82 (2021) no. 1, pp. 93-104. http://geodesic.mathdoc.fr/item/MMO_2021_82_1_a4/

[1] D. Aerts, S. Sozzo, T. Veloz, “The quantum nature of identity in human thought: Bose–Einstein statistics for conceptual indistinguishability”, Internat. J. Theoret. Phys., 54 (2015), 4430–4443 | DOI | MR | Zbl

[2] T. H. Boyer, “Blackbody radiation in classical physics: A historical perspective”, Amer. J. Phys., 86:7 (2018), 495–509 | DOI | MR

[3] M. Cattani, J. M. F. Bassalo, Intermediate statistics, parastatistics, fractionary statistics and gentilionic statistics, arXiv: 0903.4773

[4] D. G. Champernowne, “A model of income distribution”, Econ. J., 63:250 (1953), 318–351 | DOI

[5] D. Costantini, U. Garibaldi, “A probabilistic foundation of elementary particle statistics. Part I”, Stud. Hist. Phil. Mod. Phys., 28:4 (1997), 483–506 | DOI | MR | Zbl

[6] D. Costantini, U. Garibaldi, “A probabilistic foundation of elementary particle statistics. Part II”, Stud. Hist. Phil. Mod. Phys., 29:1 (1998), 37–59 | DOI | MR | Zbl

[7] U. Garibaldi, E. Scalas, Finitary probabilistic methods in econophysics, Cambridge University Press, Cambridge, 2010 | MR

[8] P. Gorroochurn, “The end of statistical independence: the story of Bose–Einstein statistics”, Math. Intelligencer., 40:3 (2018), 12–17 | DOI | MR | Zbl

[9] Y. Ijiri, H. A. Simon, “Some distributions associated with Bose–Einstein statistics”, Proc. Nat. Acad. Sci. USA, 72:5 (1975), 1654–1657 | DOI | MR

[10] A. I. Khinchin, Mathematical foundations of statistical mechanics, Dover, NY, 1949 | MR | Zbl

[11] L. D. Landau, E. M. Lifshitz, Statistical physics, v. 1, Elsevier, Amsterdam, 1980

[12] V. P. Maslov, “On a general theorem of set theory leading to the Gibbs, Bose–Einstein, and Pareto distributions as well as to the Zipf–Mandelbrot law for the stock market”, Math. Notes, 78:6 (2005), 807–813 | DOI | MR | Zbl

[13] V. P. Maslov, “Taking parastatistical corrections to the Bose–Einstein distribution into account in the quantum and classical cases”, Theor. Math. Phys., 172:3 (2012), 1289–1299 | DOI | MR | Zbl

[14] G. A. Miller, “Some effects of intermittent silence”, Am. J. Psychol., 70 (1957), 311–314 | DOI

[15] R. K. Niven, “Exact Maxwell–Boltzmann, Bose–Einstein and Fermi–Dirac statistics”, Phys. Lett. A, 342 (2005), 286–293 | DOI | MR | Zbl

[16] J. R. Persson, “Evolution of quasi-history of the Planck blackbody radiation equation in a physics textbook”, Amer. J. Phys., 86:12 (2018), 887–892 | DOI

[17] E. Scalas, A. T. Gabriel, E. Martin, G. Germano, “Velocity and energy distributions in microcanonical ensembles of hard spheres”, Phys. Rev. E, 92:2 (2015), 022140 | DOI | MR

[18] M. V. Simkin, V. P. Roychowdhury, “Re-inventing Willis”, Phys. Rep., 502:1 (2011), 1–35 | MR

[19] S. L. Zabell, “W. E. Johnson's 'sufficientness' postulate”, Ann. Stat., 10:4 (1982), 1091–1099 | DOI | MR | Zbl

[20] S. L. Zabell, “The continuum of inductive methods revisited”, The Cosmos of Science, Univ. Pittsburgh Press, 1997, 243–274