Lyapunov exponents for transfer operator cocycles of~metastable maps: a quarantine approach
Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 82 (2021) no. 1, pp. 79-92.

Voir la notice de l'article provenant de la source Math-Net.Ru

This works investigates the Lyapunov–Oseledets spectrum of transfer operator cocycles associated to one-dimensional random paired tent maps depending on a parameter $\varepsilon$, quantifying the strength of the leakage between two nearly invariant regions. We show that the system exhibits metastability, and identify the second Lyapunov exponent $\lambda_2^\varepsilon$ within an error of order $\varepsilon^2|\log \varepsilon|$. This approximation agrees with the naive prediction provided by a time-dependent two-state Markov chain. Furthermore, it is shown that $\lambda_1^\varepsilon=0$ and $\lambda_2^\varepsilon$ are simple, and the only exceptional Lyapunov exponents of magnitude greater than $-\log2+ O\Big(\log\log\frac 1\varepsilon\big/\log\frac 1\varepsilon\Big)$.
@article{MMO_2021_82_1_a3,
     author = {C. Gonz\'alez-Tokman and A. Quas},
     title = {Lyapunov exponents for transfer operator cocycles of~metastable maps: a quarantine approach},
     journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {79--92},
     publisher = {mathdoc},
     volume = {82},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MMO_2021_82_1_a3/}
}
TY  - JOUR
AU  - C. González-Tokman
AU  - A. Quas
TI  - Lyapunov exponents for transfer operator cocycles of~metastable maps: a quarantine approach
JO  - Trudy Moskovskogo matematičeskogo obŝestva
PY  - 2021
SP  - 79
EP  - 92
VL  - 82
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MMO_2021_82_1_a3/
LA  - en
ID  - MMO_2021_82_1_a3
ER  - 
%0 Journal Article
%A C. González-Tokman
%A A. Quas
%T Lyapunov exponents for transfer operator cocycles of~metastable maps: a quarantine approach
%J Trudy Moskovskogo matematičeskogo obŝestva
%D 2021
%P 79-92
%V 82
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MMO_2021_82_1_a3/
%G en
%F MMO_2021_82_1_a3
C. González-Tokman; A. Quas. Lyapunov exponents for transfer operator cocycles of~metastable maps: a quarantine approach. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 82 (2021) no. 1, pp. 79-92. http://geodesic.mathdoc.fr/item/MMO_2021_82_1_a3/

[1] W. Bahsoun, S. Vaienti, “Metastability of certain intermittent maps”, Nonlinearity, 25:1 (2012), 107–124 | DOI | MR | Zbl

[2] A. Bovier, F. den Hollander, Metastability. A potential-theoretic approach, Grundlehren der Mathematischen Wissenschaften [Fund. Princ. Math. Sci.], 351, Springer, Cham, 2015 | DOI | MR | Zbl

[3] J. Buzzi, “Absolutely continuous S.R.B. measures for random Lasota–Yorke maps”, Trans. Amer. Math. Soc., 352:7 (2000), 3289–3303 | DOI | MR | Zbl

[4] H. Crimmins, Stability of hyperbolic Oseledets splittings for quasi-compact operator cocycles, arXiv: 1912.03008 | MR

[5] D. Dolgopyat, P. Wright, “The diffusion coefficient for piecewise expanding maps of the interval with metastable states”, Stoch. Dyn., 12:1 (2012), 1150005 | DOI | MR | Zbl

[6] A. Ferguson, M. Pollicott, “Escape rates for Gibbs measures”, Ergod. Theory Dyn. Syst., 32:3 (2012), 961–988 | DOI | MR | Zbl

[7] M. I. Freidlin, A. D. Wentzell, Random perturbations of dynamical systems, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 260, Springer-Verlag, New York, 1998 | DOI | MR | Zbl

[8] G. Froyland, S. Lloyd, A. Quas, “Coherent structures and isolated spectrum for Perron–Frobenius cocycles”, Ergod. Theory Dyn. Syst., 30 (2010), 729–756 | DOI | MR | Zbl

[9] G. Froyland, S. Lloyd, A. Quas, “A semi-invertible Oseledets theorem with applications to transfer operator cocycles”, Discrete Contin. Dyn. Syst., 33:9 (2013), 3835–3860 | DOI | MR | Zbl

[10] G. Froyland, O. Stancevic, “Escape rates and Perron–Frobenius operators: open and closed dynamical systems”, Discrete Contin. Dyn. Syst. Ser. B, 14:2 (2010), 457–472 | MR | Zbl

[11] G. Froyland, O. Stancevic, “Metastability, Lyapunov exponents, escape rates, and topological entropy in random dynamical systems”, Stoch. Dyn., 13:4 (2013), 1350004 | DOI | MR | Zbl

[12] “C. González-Tokman, B. R. Hunt, P. Wright”, Ergod. Theory Dyn. Syst., 31:5 (2011), 1345–1361 | DOI | MR | Zbl

[13] C. González-Tokman, A. Quas, “Stability and collapse of the Lyapunov spectrum for Perron–Frobenius operator cocycles”, J. Eur. Math. Soc., 23:10 (2021), 3419–3457 | DOI | MR | Zbl

[14] C. González-Tokman, A. Quas, “A semi-invertible operator Oseledets theorem”, Ergod. Theory Dyn. Syst., 34:4 (2014), 1230–1272 | DOI | MR | Zbl

[15] C. González-Tokman, A. Quas, “A concise proof of the multiplicative ergodic theorem on Banach spaces”, J. Modern Dyn., 9 (2015), 237–255 | DOI | MR | Zbl

[16] J. Horan, Asymptotics for the second-largest Lyapunov exponent for some Perron–Frobenius operator cocycles, arXiv: 1910.12112 | MR

[17] J. Horan, Dynamical spectrum via determinant-free linear algebra, arXiv: 2001.06788

[18] J. Horan, Spectral gap and asymptotics for a family of cocycles of Perron–Frobenius operators, PhD thesis, Univ. Victoria, 2020 | Zbl

[19] G. Keller, “Rare events, exponential hitting times and extremal indices via spectral perturbation”, Dyn. Syst., 27:1 (2012), 11–27 | DOI | MR | Zbl

[20] G. Keller, C. Liverani, “Stability of the spectrum for transfer operators”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 28:1 (1999), 141–152 | MR | Zbl

[21] G. Keller, C. Liverani, “Rare events, escape rates and quasistationarity: some exact formulae”, J. Stat. Phys., 135:3 (2009), 519–534 | DOI | MR | Zbl

[22] V. I. Oseledets, “A multiplicative ergodic theorem. Characteristic Ljapunov, exponents of dynamical systems”, Tr. MMS, 19 (1968), 179–210 | MR | Zbl

[23] D. Thomine, “A spectral gap for transfer operators of piecewise expanding maps”, Discrete Contin. Dyn. Syst. (Ser. A), 30:3 (2011), 917–944 | DOI | MR | Zbl