Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MMO_2021_82_1_a3, author = {C. Gonz\'alez-Tokman and A. Quas}, title = {Lyapunov exponents for transfer operator cocycles of~metastable maps: a quarantine approach}, journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva}, pages = {79--92}, publisher = {mathdoc}, volume = {82}, number = {1}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/MMO_2021_82_1_a3/} }
TY - JOUR AU - C. González-Tokman AU - A. Quas TI - Lyapunov exponents for transfer operator cocycles of~metastable maps: a quarantine approach JO - Trudy Moskovskogo matematičeskogo obŝestva PY - 2021 SP - 79 EP - 92 VL - 82 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MMO_2021_82_1_a3/ LA - en ID - MMO_2021_82_1_a3 ER -
%0 Journal Article %A C. González-Tokman %A A. Quas %T Lyapunov exponents for transfer operator cocycles of~metastable maps: a quarantine approach %J Trudy Moskovskogo matematičeskogo obŝestva %D 2021 %P 79-92 %V 82 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MMO_2021_82_1_a3/ %G en %F MMO_2021_82_1_a3
C. González-Tokman; A. Quas. Lyapunov exponents for transfer operator cocycles of~metastable maps: a quarantine approach. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 82 (2021) no. 1, pp. 79-92. http://geodesic.mathdoc.fr/item/MMO_2021_82_1_a3/
[1] W. Bahsoun, S. Vaienti, “Metastability of certain intermittent maps”, Nonlinearity, 25:1 (2012), 107–124 | DOI | MR | Zbl
[2] A. Bovier, F. den Hollander, Metastability. A potential-theoretic approach, Grundlehren der Mathematischen Wissenschaften [Fund. Princ. Math. Sci.], 351, Springer, Cham, 2015 | DOI | MR | Zbl
[3] J. Buzzi, “Absolutely continuous S.R.B. measures for random Lasota–Yorke maps”, Trans. Amer. Math. Soc., 352:7 (2000), 3289–3303 | DOI | MR | Zbl
[4] H. Crimmins, Stability of hyperbolic Oseledets splittings for quasi-compact operator cocycles, arXiv: 1912.03008 | MR
[5] D. Dolgopyat, P. Wright, “The diffusion coefficient for piecewise expanding maps of the interval with metastable states”, Stoch. Dyn., 12:1 (2012), 1150005 | DOI | MR | Zbl
[6] A. Ferguson, M. Pollicott, “Escape rates for Gibbs measures”, Ergod. Theory Dyn. Syst., 32:3 (2012), 961–988 | DOI | MR | Zbl
[7] M. I. Freidlin, A. D. Wentzell, Random perturbations of dynamical systems, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 260, Springer-Verlag, New York, 1998 | DOI | MR | Zbl
[8] G. Froyland, S. Lloyd, A. Quas, “Coherent structures and isolated spectrum for Perron–Frobenius cocycles”, Ergod. Theory Dyn. Syst., 30 (2010), 729–756 | DOI | MR | Zbl
[9] G. Froyland, S. Lloyd, A. Quas, “A semi-invertible Oseledets theorem with applications to transfer operator cocycles”, Discrete Contin. Dyn. Syst., 33:9 (2013), 3835–3860 | DOI | MR | Zbl
[10] G. Froyland, O. Stancevic, “Escape rates and Perron–Frobenius operators: open and closed dynamical systems”, Discrete Contin. Dyn. Syst. Ser. B, 14:2 (2010), 457–472 | MR | Zbl
[11] G. Froyland, O. Stancevic, “Metastability, Lyapunov exponents, escape rates, and topological entropy in random dynamical systems”, Stoch. Dyn., 13:4 (2013), 1350004 | DOI | MR | Zbl
[12] “C. González-Tokman, B. R. Hunt, P. Wright”, Ergod. Theory Dyn. Syst., 31:5 (2011), 1345–1361 | DOI | MR | Zbl
[13] C. González-Tokman, A. Quas, “Stability and collapse of the Lyapunov spectrum for Perron–Frobenius operator cocycles”, J. Eur. Math. Soc., 23:10 (2021), 3419–3457 | DOI | MR | Zbl
[14] C. González-Tokman, A. Quas, “A semi-invertible operator Oseledets theorem”, Ergod. Theory Dyn. Syst., 34:4 (2014), 1230–1272 | DOI | MR | Zbl
[15] C. González-Tokman, A. Quas, “A concise proof of the multiplicative ergodic theorem on Banach spaces”, J. Modern Dyn., 9 (2015), 237–255 | DOI | MR | Zbl
[16] J. Horan, Asymptotics for the second-largest Lyapunov exponent for some Perron–Frobenius operator cocycles, arXiv: 1910.12112 | MR
[17] J. Horan, Dynamical spectrum via determinant-free linear algebra, arXiv: 2001.06788
[18] J. Horan, Spectral gap and asymptotics for a family of cocycles of Perron–Frobenius operators, PhD thesis, Univ. Victoria, 2020 | Zbl
[19] G. Keller, “Rare events, exponential hitting times and extremal indices via spectral perturbation”, Dyn. Syst., 27:1 (2012), 11–27 | DOI | MR | Zbl
[20] G. Keller, C. Liverani, “Stability of the spectrum for transfer operators”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 28:1 (1999), 141–152 | MR | Zbl
[21] G. Keller, C. Liverani, “Rare events, escape rates and quasistationarity: some exact formulae”, J. Stat. Phys., 135:3 (2009), 519–534 | DOI | MR | Zbl
[22] V. I. Oseledets, “A multiplicative ergodic theorem. Characteristic Ljapunov, exponents of dynamical systems”, Tr. MMS, 19 (1968), 179–210 | MR | Zbl
[23] D. Thomine, “A spectral gap for transfer operators of piecewise expanding maps”, Discrete Contin. Dyn. Syst. (Ser. A), 30:3 (2011), 917–944 | DOI | MR | Zbl