On generalized Newton's aerodynamic problem
Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 82 (2021) no. 1, pp. 217-226.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the generalized Newton's least resistance problem for convex bodies: minimize the functional $\iint_\Omega (1 + |\nabla u(x,y)|^2)^{-1} dx dy$ in the class of concave functions $u\colon \Omega \to [0,M]$, where the domain $\Omega \subset \mathbb{R}^2$ is convex and bounded and $M > 0$. It has been known [1] that if $u$ solves the problem then $|\nabla u(x,y)| \ge 1$ at all regular points $(x,y)$ such that $u(x,y) M$. We prove that if the upper level set $L = \{ (x,y)\colon u(x,y) = M \}$ has nonempty interior, then for almost all points of its boundary $(\overline{x}, \overline{y}) \in \partial L$ one has $\lim_{\substack{(x,y)\to(\overline{x}, \overline{y})\\\ u(x,y)$. As a by-product, we obtain a result concerning local properties of convex surfaces near ridge points.
@article{MMO_2021_82_1_a12,
     author = {A. Plakhov},
     title = {On generalized {Newton's} aerodynamic problem},
     journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {217--226},
     publisher = {mathdoc},
     volume = {82},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MMO_2021_82_1_a12/}
}
TY  - JOUR
AU  - A. Plakhov
TI  - On generalized Newton's aerodynamic problem
JO  - Trudy Moskovskogo matematičeskogo obŝestva
PY  - 2021
SP  - 217
EP  - 226
VL  - 82
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MMO_2021_82_1_a12/
LA  - en
ID  - MMO_2021_82_1_a12
ER  - 
%0 Journal Article
%A A. Plakhov
%T On generalized Newton's aerodynamic problem
%J Trudy Moskovskogo matematičeskogo obŝestva
%D 2021
%P 217-226
%V 82
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MMO_2021_82_1_a12/
%G en
%F MMO_2021_82_1_a12
A. Plakhov. On generalized Newton's aerodynamic problem. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 82 (2021) no. 1, pp. 217-226. http://geodesic.mathdoc.fr/item/MMO_2021_82_1_a12/

[1] G. Buttazzo, V. Ferone, B. Kawohl, “Minimum problems over sets of concave functions and related questions”, Math. Nachr., 173 (1995), 71–89 | DOI | MR | Zbl

[2] G. Buttazzo, B. Kawohl, “On Newton's problem of minimal resistance”, Math. Intell., 15 (1993), 7–12 | DOI | MR | Zbl

[3] G. Carlier, T. Lachand-Robert, “Convex bodies of optimal shape”, J. Convex Anal., 10:1 (2003), 265–273 | MR | Zbl

[4] A. Plakhov, “Local properties of the surface measure of convex bodies”, J. Conv. Anal., 26 (2019), 1373–1402 | MR | Zbl

[5] A. V. Pogorelov, Extrinsic geometry of convex surfaces, AMS, Providence, R.I., 1973 | MR | Zbl

[6] R. T. Rockafellar, Convex analysis, Princeton Math. Series, 28, Princeton Univ. Press, Princeton, 1970 | MR | Zbl

[7] G. Wachsmuth, “The numerical solution of Newton's problem of least resistance”, Math. Program. A, 147 (2014), 331–350 | DOI | MR | Zbl