Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MMO_2021_82_1_a12, author = {A. Plakhov}, title = {On generalized {Newton's} aerodynamic problem}, journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva}, pages = {217--226}, publisher = {mathdoc}, volume = {82}, number = {1}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/MMO_2021_82_1_a12/} }
A. Plakhov. On generalized Newton's aerodynamic problem. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 82 (2021) no. 1, pp. 217-226. http://geodesic.mathdoc.fr/item/MMO_2021_82_1_a12/
[1] G. Buttazzo, V. Ferone, B. Kawohl, “Minimum problems over sets of concave functions and related questions”, Math. Nachr., 173 (1995), 71–89 | DOI | MR | Zbl
[2] G. Buttazzo, B. Kawohl, “On Newton's problem of minimal resistance”, Math. Intell., 15 (1993), 7–12 | DOI | MR | Zbl
[3] G. Carlier, T. Lachand-Robert, “Convex bodies of optimal shape”, J. Convex Anal., 10:1 (2003), 265–273 | MR | Zbl
[4] A. Plakhov, “Local properties of the surface measure of convex bodies”, J. Conv. Anal., 26 (2019), 1373–1402 | MR | Zbl
[5] A. V. Pogorelov, Extrinsic geometry of convex surfaces, AMS, Providence, R.I., 1973 | MR | Zbl
[6] R. T. Rockafellar, Convex analysis, Princeton Math. Series, 28, Princeton Univ. Press, Princeton, 1970 | MR | Zbl
[7] G. Wachsmuth, “The numerical solution of Newton's problem of least resistance”, Math. Program. A, 147 (2014), 331–350 | DOI | MR | Zbl