A note on double rotations of infinite type
Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 82 (2021) no. 1, pp. 185-203.

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce a new renormalization procedure on double rotations, which is reminiscent of the classical Rauzy induction. Using this renormalization we prove that the set of parameters which induce infinite type double rotations has Hausdorff dimension strictly smaller than 3. Moreover, we construct a natural invariant measure supported on these parameters and show that, with respect to this measure, almost all double rotations are uniquely ergodic.
@article{MMO_2021_82_1_a10,
     author = {M. Artigiani and Ch. Fougeron and P. Hubert and A. Skripchenko},
     title = {A note on double rotations of infinite type},
     journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {185--203},
     publisher = {mathdoc},
     volume = {82},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MMO_2021_82_1_a10/}
}
TY  - JOUR
AU  - M. Artigiani
AU  - Ch. Fougeron
AU  - P. Hubert
AU  - A. Skripchenko
TI  - A note on double rotations of infinite type
JO  - Trudy Moskovskogo matematičeskogo obŝestva
PY  - 2021
SP  - 185
EP  - 203
VL  - 82
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MMO_2021_82_1_a10/
LA  - en
ID  - MMO_2021_82_1_a10
ER  - 
%0 Journal Article
%A M. Artigiani
%A Ch. Fougeron
%A P. Hubert
%A A. Skripchenko
%T A note on double rotations of infinite type
%J Trudy Moskovskogo matematičeskogo obŝestva
%D 2021
%P 185-203
%V 82
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MMO_2021_82_1_a10/
%G en
%F MMO_2021_82_1_a10
M. Artigiani; Ch. Fougeron; P. Hubert; A. Skripchenko. A note on double rotations of infinite type. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 82 (2021) no. 1, pp. 185-203. http://geodesic.mathdoc.fr/item/MMO_2021_82_1_a10/

[1] H. Bruin, “Renormalization in a class of interval translation maps of $d$ branches”, Dyn. Syst., 22:1 (2007), 11–24 | DOI | MR | Zbl

[2] H. Bruin, G. Clack, “Inducing and unique ergodicity of double rotations”, Discrete Contin. Dyn. Syst., 32:12 (2012), 4133–4147 | DOI | MR | Zbl

[3] J. Buzzi, P. Hubert, “Piecewise monotone maps without periodic points: rigidity, measures and complexity”, Erg. Th. Dynam. Systems, 24:2 (2004), 383–405 | DOI | MR | Zbl

[4] M. Boshernitzan, I. Kornfeld, “Interval translation mappings”, Erg. Th. Dynam. Systems, 15:5 (1995), 821–832 | DOI | MR | Zbl

[5] H. Bruin, S. Troubetzkoy, “The Gauss map on a class of interval translation mappings”, Israel J. Math., 137 (2003), 125–148 | DOI | MR | Zbl

[6] J. Cassaigne, F. Nicolas, “Factor complexity”, Combinatorics, automata and number theory, Encyclopedia Math. Appl., 135, Cambridge Univ. Press, Cambridge, 2010, 163–247 | MR

[7] I. Dynnikov, P. Hubert, A. Skripchenko, Dynamical systems around the Rauzy gasket and their ergodic properties, 2020, arXiv: 2011.15043v1 [math.DS] | Zbl

[8] C. Fougeron, Dynamical properties of simplicial systems and continued fraction algorithms, 2020, arXiv: 2001.01367 [math.DS]

[9] D. Gaboriau, G. Levitt, F. Paulin, “Pseudogroups of isometries of $\mathbb{R}$ and Rips' theorem on free actions on $\mathbb{R}$-trees”, Israel J. Math., 87:1–2 (1994), 403–428 | DOI | MR | Zbl

[10] N. Pytheas Fogg, Substitutions in dynamics, arithmetics and combinatorics, Lecture Notes in Mathematics, 1794, Springer, Berlin, 2002 | MR | Zbl

[11] H. Suzuki, S. Ito, K. Aihara, “Double rotations”, Discrete Contin. Dyn. Syst., 13:2 (2005), 515–532 | DOI | MR | Zbl

[12] J. Schmeling, S. Troubetzkoy, “Interval translation mappings”, Dynamical systems (Luminy–Marseille, 1998), World Sci. Publ., River Edge, NJ, 2000, 291–302 | DOI | MR | Zbl

[13] A. Skripchenko, S. Troubetzkoy, “Polygonal billiards with one sided scattering”, Ann. Inst. Fourier (Grenoble), 65:5 (2015), 1881–1896 | DOI | MR | Zbl

[14] S. Troubetzkoy, Absence of mixing for interval translation mappings and some generalizations, 2021, arXiv: 2102.05904 [math.DS] | Zbl

[15] D. Volk, “Almost every interval translation map of three intervals is finite type”, Discrete Contin. Dyn. Syst., 34:5 (2014), 2307–2314 | DOI | MR | Zbl

[16] W. A. Veech, “Gauss measures for transformations on the space of interval exchange maps”, Ann. Math. (2), 115:1 (1982), 201–242 | DOI | MR | Zbl

[17] J.-C. Yoccoz, “Interval exchange maps and translation surfaces”, Homogeneous flows, moduli spaces and arithmetic, Clay Math. Proc., 10, Proc. Amer. Math. Soc., Providence, RI, 2010, 1–69 | MR | Zbl