Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MMO_2021_82_1_a10, author = {M. Artigiani and Ch. Fougeron and P. Hubert and A. Skripchenko}, title = {A note on double rotations of infinite type}, journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva}, pages = {185--203}, publisher = {mathdoc}, volume = {82}, number = {1}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/MMO_2021_82_1_a10/} }
TY - JOUR AU - M. Artigiani AU - Ch. Fougeron AU - P. Hubert AU - A. Skripchenko TI - A note on double rotations of infinite type JO - Trudy Moskovskogo matematičeskogo obŝestva PY - 2021 SP - 185 EP - 203 VL - 82 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MMO_2021_82_1_a10/ LA - en ID - MMO_2021_82_1_a10 ER -
M. Artigiani; Ch. Fougeron; P. Hubert; A. Skripchenko. A note on double rotations of infinite type. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 82 (2021) no. 1, pp. 185-203. http://geodesic.mathdoc.fr/item/MMO_2021_82_1_a10/
[1] H. Bruin, “Renormalization in a class of interval translation maps of $d$ branches”, Dyn. Syst., 22:1 (2007), 11–24 | DOI | MR | Zbl
[2] H. Bruin, G. Clack, “Inducing and unique ergodicity of double rotations”, Discrete Contin. Dyn. Syst., 32:12 (2012), 4133–4147 | DOI | MR | Zbl
[3] J. Buzzi, P. Hubert, “Piecewise monotone maps without periodic points: rigidity, measures and complexity”, Erg. Th. Dynam. Systems, 24:2 (2004), 383–405 | DOI | MR | Zbl
[4] M. Boshernitzan, I. Kornfeld, “Interval translation mappings”, Erg. Th. Dynam. Systems, 15:5 (1995), 821–832 | DOI | MR | Zbl
[5] H. Bruin, S. Troubetzkoy, “The Gauss map on a class of interval translation mappings”, Israel J. Math., 137 (2003), 125–148 | DOI | MR | Zbl
[6] J. Cassaigne, F. Nicolas, “Factor complexity”, Combinatorics, automata and number theory, Encyclopedia Math. Appl., 135, Cambridge Univ. Press, Cambridge, 2010, 163–247 | MR
[7] I. Dynnikov, P. Hubert, A. Skripchenko, Dynamical systems around the Rauzy gasket and their ergodic properties, 2020, arXiv: 2011.15043v1 [math.DS] | Zbl
[8] C. Fougeron, Dynamical properties of simplicial systems and continued fraction algorithms, 2020, arXiv: 2001.01367 [math.DS]
[9] D. Gaboriau, G. Levitt, F. Paulin, “Pseudogroups of isometries of $\mathbb{R}$ and Rips' theorem on free actions on $\mathbb{R}$-trees”, Israel J. Math., 87:1–2 (1994), 403–428 | DOI | MR | Zbl
[10] N. Pytheas Fogg, Substitutions in dynamics, arithmetics and combinatorics, Lecture Notes in Mathematics, 1794, Springer, Berlin, 2002 | MR | Zbl
[11] H. Suzuki, S. Ito, K. Aihara, “Double rotations”, Discrete Contin. Dyn. Syst., 13:2 (2005), 515–532 | DOI | MR | Zbl
[12] J. Schmeling, S. Troubetzkoy, “Interval translation mappings”, Dynamical systems (Luminy–Marseille, 1998), World Sci. Publ., River Edge, NJ, 2000, 291–302 | DOI | MR | Zbl
[13] A. Skripchenko, S. Troubetzkoy, “Polygonal billiards with one sided scattering”, Ann. Inst. Fourier (Grenoble), 65:5 (2015), 1881–1896 | DOI | MR | Zbl
[14] S. Troubetzkoy, Absence of mixing for interval translation mappings and some generalizations, 2021, arXiv: 2102.05904 [math.DS] | Zbl
[15] D. Volk, “Almost every interval translation map of three intervals is finite type”, Discrete Contin. Dyn. Syst., 34:5 (2014), 2307–2314 | DOI | MR | Zbl
[16] W. A. Veech, “Gauss measures for transformations on the space of interval exchange maps”, Ann. Math. (2), 115:1 (1982), 201–242 | DOI | MR | Zbl
[17] J.-C. Yoccoz, “Interval exchange maps and translation surfaces”, Homogeneous flows, moduli spaces and arithmetic, Clay Math. Proc., 10, Proc. Amer. Math. Soc., Providence, RI, 2010, 1–69 | MR | Zbl