Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MMO_2021_82_1_a1, author = {E. Glasner and J.-P. Thouvenot and B. Weiss}, title = {On some generic classes of ergodic measure preserving transformations}, journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva}, pages = {19--44}, publisher = {mathdoc}, volume = {82}, number = {1}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/MMO_2021_82_1_a1/} }
TY - JOUR AU - E. Glasner AU - J.-P. Thouvenot AU - B. Weiss TI - On some generic classes of ergodic measure preserving transformations JO - Trudy Moskovskogo matematičeskogo obŝestva PY - 2021 SP - 19 EP - 44 VL - 82 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MMO_2021_82_1_a1/ LA - en ID - MMO_2021_82_1_a1 ER -
%0 Journal Article %A E. Glasner %A J.-P. Thouvenot %A B. Weiss %T On some generic classes of ergodic measure preserving transformations %J Trudy Moskovskogo matematičeskogo obŝestva %D 2021 %P 19-44 %V 82 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MMO_2021_82_1_a1/ %G en %F MMO_2021_82_1_a1
E. Glasner; J.-P. Thouvenot; B. Weiss. On some generic classes of ergodic measure preserving transformations. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 82 (2021) no. 1, pp. 19-44. http://geodesic.mathdoc.fr/item/MMO_2021_82_1_a1/
[1] R. L. Adler, P. C. Shields, “Skew products of Bernoulli shifts with rotations”, Israel J. Math., 12 (1972), 215–222 | DOI | MR | Zbl
[2] O. N. Ageev, “The generic automorphism of a Lebesgue space conjugate to a $G$-extension for any finite abelian group $G$”, Dokl. Akad. Nauk, 374:4 (2000), 439–442 (Russian) | MR | Zbl
[3] O N. Ageev, “On the genericity of some nonasymptotic dynamic properties”, Russian Math. Surveys, 58:1 (2003), 173–174 | DOI | MR | Zbl
[4] O. N. Ageev, “A typical dynamical system is not simple or semisimple”, Erg. Th. Dynam. Systems, 23 (2003), 1625–1636 | DOI | MR | Zbl
[5] T. Austin, “Measure concentration and the weak Pinsker property”, Publ. Math. IHES, 128 (2018), 1–119 | DOI | MR | Zbl
[6] J. Chaika, B. Kra, A prime system with many self-joinings, arXiv: 1902.02421v2 | MR
[7] A. del Junco, “A simple map with no prime factors”, Israel J. Math., 104 (1998), 301–320 | DOI | MR | Zbl
[8] A. del Junco, D. Rudolph, “On ergodic actions whose self-joinings are graphs”, Erg. Th. Dynam. Systems, 7 (1987), 531–557 | DOI | MR | Zbl
[9] A. del Junco, D. Rudolph, “Residual behavior of induced maps”, Israel J. Math., 93 (1996), 387–398 | DOI | MR | Zbl
[10] A. del Junco, M. Lemańczyk, M. K. Mentzen, “Semisimplicity, joinings and group extensions”, Studia Math., 112:2 (1995), 141–164 | MR | Zbl
[11] A. I. Danilenko, “On simplicity concepts for ergodic actions”, J. Anal. Math., 102 (2007), 77–117 | DOI | MR | Zbl
[12] T. de la Rue, J. de Sam Lazaro, “Une transformation générique peut être insérée dans un flot”, Ann. Inst. H. Poincaré Probab. Statist., 39:1 (2003), 121–134 | DOI | MR | Zbl
[13] N. A. Friedman, “Partial mixing, partial rigidity, and factors”, Measure and measurable dynamics (Rochester, NY, 1987), Contemp. Math., 94, AMS, Providence, RI, 1989, 141–145 | DOI | MR
[14] E. Glasner, “A topological version of a theorem of Veech and almost simple flows”, Erg. Th. Dynam. Systems, 10 (1990), 463–482 | DOI | MR | Zbl
[15] E. Glasner, Ergodic theory via joinings, Math. Surveys and Monographs, 101, AMS, Providence, RI, 2003 | DOI | MR | Zbl
[16] E. Glasner, B. Host, D. Rudolph, “Simple systems and their higher order self-joinings”, Israel J. Math., 78:1 (1992), 131–142 | DOI | MR | Zbl
[17] E. Glasner, J. L. King, “A zero-one law for dynamical properties”, Topological dynamics and applications (Minneapolis, MN, 1995), Contemp. Math., 215, AMS, Providence, RI, 1998, 231–242 | DOI | MR
[18] E. Glasner, B. Weiss, “A weakly mixing upside-down tower of isometric extensions”, Erg. Th. Dynam. Systems, 1 (1981), 151–157 | DOI | MR | Zbl
[19] E. Glasner, B. Weiss, “Relative weak mixing is generic”, Sci. China Math., 62:1 (2019), 69–72 | DOI | MR | Zbl
[20] P. R. Halmos, Lectures on ergodic theory, Publications of the Mathematical Society of Japan, 3, The Mathematical Society of Japan, 1956 | MR | Zbl
[21] R. Jones, W. Parry, “Compact abelian group extensions of dynamical systems. II”, Compositio Mathematica, 25:2 (1972), 135–147 | MR | Zbl
[22] A. Katok, A. Stepin, “Approximations in ergodic theory”, Russian Math. Surveys, 22:5 (1967), 77–102 | DOI | MR
[23] J. L. F. King, “Ergodic properties where order 4 implies infinite order”, Israel. J. Math., 80:1-2 (1992), 65–86 | DOI | MR | Zbl
[24] J. L. F. King, “The generic transformation has roots of all orders”, Colloq. Math., 84/85:2 (2000), 521–547 | DOI | MR | Zbl
[25] I. Meilijson, “Mixing properties of a class of skew-products”, Israel J. Math., 19 (1974), 266–270 | DOI | MR
[26] J. Melleray, “Extensions of generic measure-preserving actions”, Ann. Inst. Fourier, 64:2 (2014), 607–623 | DOI | MR | Zbl
[27] J. Melleray, T. Tsankov, “Generic representations of abelian groups and extreme amenability”, Israel J. Math., 198:1 (2013), 129–167 | DOI | MR | Zbl
[28] D. S. Ornstein, “A $K$ automorphism with no square root and Pinsker's conjecture”, Adv. Math., 10 (1973), 89–102 | DOI | MR | Zbl
[29] D. S. Ornstein, D. J. Rudolph, B. Weiss, Equivalence of measure preserving transformations, Mem. Amer. Math. Soc., 37, no. 262, 1982 | MR
[30] J. C. Oxtoby, Measure and category, Graduate Texts in Mathematics, 2, Springer–Verlag, New York–Berlin, 1980 | DOI | MR | Zbl
[31] W. Parry, “Ergodic properties of affine transformations and flows on nilmanifolds”, Amer. J. Math., 91 (1969), 757–771 | DOI | MR | Zbl
[32] D. J. Rudolph, “An example of a measure preserving map with minimal self-joinings, and applications”, J. Analyse Math., 35 (1979), 97–122 | DOI | MR | Zbl
[33] D. J. Rudolph, “Classifying the isometric extensions of a Bernoulli shift”, J. Analyse Math., 34 (1978), 36–60 | DOI | MR | Zbl
[34] D. J. Rudolph, “$k$-fold mixing lifts to weakly mixing isometric extensions”, Erg. Th. Dynam. Systems, 5:3 (1985), 445–447 | DOI | MR | Zbl
[35] D. J. Rudolph, “$\mathbb{Z}^n$ and $\mathbb{R}^n$ cocycle extensions and complementary algebras”, Erg. Th. Dynam. Systems, 6:4 (1986), 583–599 | DOI | MR | Zbl
[36] V. V. Ryzhikov, “Around simple dynamical systems. Induced joinings and multiple mixing”, J. Dynam. Control Systems, 3:1 (1997), 111–127 | DOI | MR | Zbl
[37] V. V. Ryzhikov, “Factors, rank, and embedding of a generic $\mathbb{Z}^n$-action in an $\mathbb{R}^n$-flow”, Russian Math. Surveys, 61:4 (2006), 786–787 | DOI | MR | Zbl
[38] V. V. Ryzhikov, J.-P. Thouvenot, “Disjointness, divisibility, and quasi-simplicity of measure-preserving actions”, Funct. Anal. Appl., 40:3 (2006), 237–240 | DOI | MR | Zbl
[39] M. Schnurr, “Generic properties of extensions”, Erg. Th. Dynam. Systems, 39 (2019), 3144–3168 | DOI | MR | Zbl
[40] S. Solecki, “Closed subgroups generated by generic measure automorphisms”, Erg. Th. Dynam. Systems, 34 (2014), 1011–1017 | DOI | MR | Zbl
[41] A. M. Stepin, “Spectral properties of typical dynamic systems”, Math USSR Izv., 29:1 (1987), 159–192 | DOI | MR | Zbl
[42] “A. M. Stëpin, A. M. Eremenko”, Math., 195:12 (2004), 1795–1808 | Zbl
[43] J.-P. Thouvenot, “On the stability of the weak Pinsker property”, Israel J. Math., 27:2 (1977), 150–162 | DOI | MR | Zbl
[44] S. V. Tikhonov, “Embeddings lattice actions in flows with multidimensional time”, Sb. Math., 197:1-2 (2006), 95–126 | DOI | MR | Zbl
[45] W. A. Veech, “Point-distal flows”, Amer. J. Math., 92 (1970), 205–242 | DOI | MR | Zbl
[46] W. A. Veech, “A criterion for a process to be prime”, Monatsh. Math., 94 (1982), 335–341 | DOI | MR | Zbl