On some generic classes of ergodic measure preserving transformations
Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 82 (2021) no. 1, pp. 19-44
Voir la notice de l'article provenant de la source Math-Net.Ru
We answer positively a question of Ryzhikov, namely we show that being a relatively weakly mixing extension is a comeager property in the Polish group of measure preserving transformations. We study some related classes of ergodic transformations and their interrelations. In the second part of the paper we show that for a fixed ergodic $T$ with property $\mathbf{A}$, a generic extension $\widehat{T}$ of $T$ also has the property $\mathbf{A}$. Here $\mathbf{A}$ stands for each of the following properties: (i) having the same entropy as $T$, (ii) Bernoulli, (iii) K, and (iv) loosely Bernoulli. References: 46 entries.
@article{MMO_2021_82_1_a1,
author = {E. Glasner and J.-P. Thouvenot and B. Weiss},
title = {On some generic classes of ergodic measure preserving transformations},
journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva},
pages = {19--44},
publisher = {mathdoc},
volume = {82},
number = {1},
year = {2021},
language = {en},
url = {http://geodesic.mathdoc.fr/item/MMO_2021_82_1_a1/}
}
TY - JOUR AU - E. Glasner AU - J.-P. Thouvenot AU - B. Weiss TI - On some generic classes of ergodic measure preserving transformations JO - Trudy Moskovskogo matematičeskogo obŝestva PY - 2021 SP - 19 EP - 44 VL - 82 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MMO_2021_82_1_a1/ LA - en ID - MMO_2021_82_1_a1 ER -
%0 Journal Article %A E. Glasner %A J.-P. Thouvenot %A B. Weiss %T On some generic classes of ergodic measure preserving transformations %J Trudy Moskovskogo matematičeskogo obŝestva %D 2021 %P 19-44 %V 82 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MMO_2021_82_1_a1/ %G en %F MMO_2021_82_1_a1
E. Glasner; J.-P. Thouvenot; B. Weiss. On some generic classes of ergodic measure preserving transformations. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 82 (2021) no. 1, pp. 19-44. http://geodesic.mathdoc.fr/item/MMO_2021_82_1_a1/