On some generic classes of ergodic measure preserving transformations
Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 82 (2021) no. 1, pp. 19-44

Voir la notice de l'article provenant de la source Math-Net.Ru

We answer positively a question of Ryzhikov, namely we show that being a relatively weakly mixing extension is a comeager property in the Polish group of measure preserving transformations. We study some related classes of ergodic transformations and their interrelations. In the second part of the paper we show that for a fixed ergodic $T$ with property $\mathbf{A}$, a generic extension $\widehat{T}$ of $T$ also has the property $\mathbf{A}$. Here $\mathbf{A}$ stands for each of the following properties: (i) having the same entropy as $T$, (ii) Bernoulli, (iii) K, and (iv) loosely Bernoulli. References: 46 entries.
@article{MMO_2021_82_1_a1,
     author = {E. Glasner and J.-P. Thouvenot and B. Weiss},
     title = {On some generic classes of ergodic measure  preserving transformations},
     journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {19--44},
     publisher = {mathdoc},
     volume = {82},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MMO_2021_82_1_a1/}
}
TY  - JOUR
AU  - E. Glasner
AU  - J.-P. Thouvenot
AU  - B. Weiss
TI  - On some generic classes of ergodic measure  preserving transformations
JO  - Trudy Moskovskogo matematičeskogo obŝestva
PY  - 2021
SP  - 19
EP  - 44
VL  - 82
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MMO_2021_82_1_a1/
LA  - en
ID  - MMO_2021_82_1_a1
ER  - 
%0 Journal Article
%A E. Glasner
%A J.-P. Thouvenot
%A B. Weiss
%T On some generic classes of ergodic measure  preserving transformations
%J Trudy Moskovskogo matematičeskogo obŝestva
%D 2021
%P 19-44
%V 82
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MMO_2021_82_1_a1/
%G en
%F MMO_2021_82_1_a1
E. Glasner; J.-P. Thouvenot; B. Weiss. On some generic classes of ergodic measure  preserving transformations. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 82 (2021) no. 1, pp. 19-44. http://geodesic.mathdoc.fr/item/MMO_2021_82_1_a1/