Positive entropy implies chaos along any infinite sequence
Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 82 (2021) no. 1, pp. 3-18.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be an infinite countable discrete amenable group. For any $G$-action on a compact metric space $(X,\rho)$, it turns out that if the action has positive topological entropy, then for any sequence $\{s_i\}_{i=1}^{+\infty}$ with pairwise distinct elements in $G$ there exists a Cantor subset $K$ of $X$ which is Li–Yorke chaotic along this sequence, that is, for any two distinct points $x,y\in K$, one has $$ \limsup\limits_{i\to+\infty}\rho(s_i x,s_iy)>0,\ \text{and}\ \liminf_{i\to+\infty}\rho(s_ix,s_iy)=0. $$
@article{MMO_2021_82_1_a0,
     author = {Wen Huang and Jian Li and Xiangdong Ye},
     title = {Positive entropy implies chaos along any infinite sequence},
     journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {3--18},
     publisher = {mathdoc},
     volume = {82},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MMO_2021_82_1_a0/}
}
TY  - JOUR
AU  - Wen Huang
AU  - Jian Li
AU  - Xiangdong Ye
TI  - Positive entropy implies chaos along any infinite sequence
JO  - Trudy Moskovskogo matematičeskogo obŝestva
PY  - 2021
SP  - 3
EP  - 18
VL  - 82
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MMO_2021_82_1_a0/
LA  - en
ID  - MMO_2021_82_1_a0
ER  - 
%0 Journal Article
%A Wen Huang
%A Jian Li
%A Xiangdong Ye
%T Positive entropy implies chaos along any infinite sequence
%J Trudy Moskovskogo matematičeskogo obŝestva
%D 2021
%P 3-18
%V 82
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MMO_2021_82_1_a0/
%G en
%F MMO_2021_82_1_a0
Wen Huang; Jian Li; Xiangdong Ye. Positive entropy implies chaos along any infinite sequence. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 82 (2021) no. 1, pp. 3-18. http://geodesic.mathdoc.fr/item/MMO_2021_82_1_a0/

[1] F. Blanchard, E. Glasner, S. Kolyada, A. Maass, “On Li–Yorke pairs”, J. Reine Angew. Math., 547 (2002), 51–68 | MR | Zbl

[2] L. Bowen, “Measure conjugacy invariants for actions of countable sofic groups”, J. Amer. Math. Soc., 23:1 (2010), 217–245 | DOI | MR | Zbl

[3] A. Danilenko, “Entropy theory from the orbital point of view”, Monatsh. Math., 134:2 (2001), 121–141 | DOI | MR | Zbl

[4] M. Einsiedler, T. Ward, Ergodic theory with a view towards number theory, Graduate Texts in Mathematics, 259, Springer-Verlag, London, 2011 | MR | Zbl

[5] H. Furstenberg, Recurrence in ergodic theory and combinatorial number theory, Princeton Univ. Press, Princeton, NJ, 1981 | MR | Zbl

[6] E. Glasner, Ergodic theory via joinings, Mathematical Surveys and Monographs, 101, AMS, Providence, RI, 2003 | DOI | MR | Zbl

[7] E. Glasner, J. P. Thouvenot, B. Weiss, “Entropy theory without a past”, Ergodic Theory Dynam. Systems, 20:5 (2000), 1355–1370 | DOI | MR | Zbl

[8] M. Gromov, “Endomorphisms of symbolic algebraic varieties”, J. Eur. Math. Soc., 1:2 (1999), 109–197 | DOI | MR | Zbl

[9] W. Huang, J. Li, X. Ye, “Stable sets and mean Li–Yorke chaos in positive entropy systems”, J. Funct. Anal., 266:6 (2014), 3377–3394 | DOI | MR | Zbl

[10] W. Huang, L. Xu, Y. Yi, “Asymptotic pairs, stable sets and chaos in positive entropy systems”, J. Funct. Anal., 268:4 (2015), 824–846 | DOI | MR | Zbl

[11] W. Huang, X. Ye, G. Zhang, “Local entropy theory for a countable discrete amenable group action”, J. Funct. Anal., 261:4 (2011), 1028–1082 | DOI | MR | Zbl

[12] D. Kerr, H. Li, “Independence in topological and $C^*$-dynamics”, Math. Ann., 338:4 (2007), 869–926 | DOI | MR | Zbl

[13] D. Kerr, H. Li, “Combinatorial independence and sofic entropy”, Commun. Math. Stat., 1:2 (2013), 213–257 | DOI | MR | Zbl

[14] D. Kerr, H. Li, Ergodic theory: Independence and dichotomies, Springer Monographs in Mathematics, Springer, Cham, 2016 | DOI | MR | Zbl

[15] H. Li, Z. Rong, “Combinatorial independence and naive entropy”, Erg. Th. Dynam. Systems, 41:7 (2021), 2136–2147, arXiv: 1901.02657 | DOI | MR | Zbl

[16] J. Li, X. Ye, “Recent development of chaos theory in topological dynamics”, Acta Math. Sin. (Engl. Ser.), 32:1 (2016), 83–114 | DOI | MR | Zbl

[17] T. Li, J. Yorke, “Period three implies chaos”, Amer. Math. Monthly, 82:10 (1975), 985–992 | DOI | MR | Zbl

[18] J. Mycielski, “Independent sets in topological algebras”, Fund. Math., 55 (1964), 139–147 | DOI | MR | Zbl

[19] V. A. Rohlin, On the fundamental ideas of measure theory, Amer. Math. Soc. Translation, 71, 1952 | MR

[20] D. Rudolph, B. Weiss, “Entropy and mixing for amenable group actions”, Ann. of Math. (2), 151:3 (2000), 1119–1150 | DOI | MR | Zbl

[21] Z. Wang, G. Zhang, “Chaotic behavior of group actions”, Dynamics and numbers, Contemp. Math., 669, Amer. Math. Soc., Providence, RI, 2016, 299–315 | DOI | MR | Zbl

[22] J. Xiong, “Chaos in a topologically transitive system”, Sci. China. Ser. A, 48:7 (2005), 929–939 | DOI | MR | Zbl