Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MMO_2020_81_2_a2, author = {V. V. Ryzhikov}, title = {Measure-preserving rank one transformations}, journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva}, pages = {281--318}, publisher = {mathdoc}, volume = {81}, number = {2}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MMO_2020_81_2_a2/} }
V. V. Ryzhikov. Measure-preserving rank one transformations. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 81 (2020) no. 2, pp. 281-318. http://geodesic.mathdoc.fr/item/MMO_2020_81_2_a2/
[1] O. N. Ageev, “Tipichnyi avtomorfizm prostranstva Lebega sopryazhen s $G$-rasshireniem dlya lyuboi konechnoi abelevoi gruppy $G$”, Dokl. RAN, 374:4 (2000), 439–442 | MR | Zbl
[2] A. I. Bashtanov, “Tipichnoe peremeshivanie imeet rang 1”, Matem. zametki, 93:2 (2013), 163–171 | MR | Zbl
[3] A. M. Vershik, “Ravnomernaya algebraicheskaya approksimatsiya operatorov sdviga i umnozheniya”, Dokl. AN SSSR, 259:3 (1981), 526–529 | MR | Zbl
[4] A. B. Katok, A. M. Stepin, “Approksimatsii v ergodicheskoi teorii”, UMN, 22:5 (1967), 81–106 | MR | Zbl
[5] A. Yu. Kushnir, V. V. Ryzhikov, “Slabye zamykaniya ergodicheskikh deistvii”, Matem. zametki, 100:6 (2016), 847–854
[6] M. S. Lobanov, V. V. Ryzhikov, “Spetsialnye slabye predely i prostoi spektr tenzornykh proizvedenii potokov”, Matem. sb., 209:5 (2018), 62–73 | MR | Zbl
[7] Yu. A. Neretin, Kategorii simmetrii i beskonechnomernye gruppy, URSS, M., 1998
[8] V. I. Oseledets, “Avtomorfizm s prostym i nepreryvnym spektrom bez gruppovogo svoistva”, Matem. zametki, 5:3 (1969), 323–326 | Zbl
[9] V. I. Oseledets, “Dve neizomorfnye dinamicheskie sistemy s odinakovym prostym nepreryvnym spektrom”, Funkts. analiz i ego pril., 5:3 (1971), 75–79 | MR
[10] V. V. Ryzhikov, “Peremeshivanie, rang i minimalnoe samoprisoedinenie deistvii s invariantnoi meroi”, Matem. sb., 183:3 (1992), 133–160
[11] V. V. Ryzhikov, “Spleteniya tenzornykh proizvedenii i stokhasticheskii tsentralizator dinamicheskikh sistem”, Matem. sb., 188:2 (1997), 67–94 | MR | Zbl
[12] V. V. Ryzhikov, “Problema Rokhlina o kratnom peremeshivanii v klasse deistvii polozhitelnogo lokalnogo ranga”, Funkts. analiz i ego pril., 34:1 (2000), 90–93 | MR | Zbl
[13] V. V. Ryzhikov, “O spektralnykh i peremeshivayuschikh svoistvakh konstruktsii ranga 1 v ergodicheskoi teorii”, Dokl. RAN, 409:4 (2006), 448–450 | MR | Zbl
[14] V. V. Ryzhikov, Zh.-P. Tuveno, “Diz'yunktnost, delimost i kvaziprostota sokhranyayuschikh meru deistvii”, Funkts. analiz i ego pril., 40:3 (2006), 85–89 | MR | Zbl
[15] V. V. Ryzhikov, “Faktory, rang i vlozhenie tipichnogo $\mathbb{Z}^n$-deistviya v $\mathbb{R}^n$-potok”, UMN, 61:4 (370) (2006), 197–198 | MR | Zbl
[16] V. V. Ryzhikov, “Slabye predely stepenei, prostoi spektr simmetricheskikh proizvedenii i peremeshivayuschie konstruktsii ranga 1”, Matem. sb., 198:5 (2007), 137–159 | MR | Zbl
[17] V. V. Ryzhikov, “Ogranichennye ergodicheskie konstruktsii, diz'yunktnost i slabye predely stepenei”, Tr. MMO, 74, no. 1, 2013, 201–208 | Zbl
[18] V. V. Ryzhikov, “Ergodicheskie gomoklinicheskie gruppy, sidonovskie konstruktsii i puassonovskie nadstroiki”, Tr. MMO, 75, no. 1, 2014, 93–103 | Zbl
[19] V. V. Ryzhikov, Zh. P. Tuveno, “O tsentralizatore beskonechnogo peremeshivayuschego preobrazovaniya ranga odin”, Funkts. analiz i ego pril., 49:3 (2015), 88–91 | Zbl
[20] V. V. Ryzhikov, “Zadacha Tuveno ob izomorfizme tenzornykh stepenei ergodicheskikh potokov”, Matem. zametki, 104:6 (2018), 912–917 | Zbl
[21] V. V. Ryzhikov, “Slabo gomoklinicheskie gruppy ergodicheskikh deistvii”, Tr. MMO, 80, no. 1, 2019, 97–111 | Zbl
[22] V. V. Ryzhikov, “Slaboe zamykanie beskonechnykh deistvii ranga 1, prisoedineniya i spektr”, Matem. zametki, 106:6 (2019), 894–903 | Zbl
[23] A. M. Stepin, “Spektralnye svoistva tipichnykh dinamicheskikh sistem”, Izv. AN SSSR. Ser. matem., 50:4 (1986), 801–834 | MR
[24] A. M. Stepin, A. M. Eremenko, “Needinstvennost vklyucheniya v potok i obshirnost tsentralizatora dlya tipichnogo sokhranyayuschego meru preobrazovaniya”, Matem. sb., 195:12 (2004), 95–108 | Zbl
[25] S. V. Tikhonov, “Polnaya metrika na mnozhestve peremeshivayuschikh preobrazovanii”, Matem. sb., 198:4 (2007), 135–158 | Zbl
[26] T. M. Adams, “Smorodinsky's conjecture on rank-one mixing”, Proc. Amer. Math. Soc., 126 (1998), 739–744 | DOI | MR | Zbl
[27] O. Ageev, “The homogeneous spectrum problem in ergodic theory”, Invent. Math., 160 (2005), 417–446 | DOI | MR | Zbl
[28] O. N. Ageev, “Spectral rigidity of group actions: applications to the case $\mathrm{gr}\langle t, s; ts=st^2\rangle$”, Proc. Am. Math. Soc., 134:5 (2006), 1331–1338 | DOI | MR | Zbl
[29] St. Alpern, “Conjecture: In general a mixing transformation is not two-fold mixing”, Ann. Probab., 13:1 (1985), 310–313 | DOI | MR | Zbl
[30] J. R. Baxter, “A class of ergodic transformations having simple spectrum”, Proc. Am. Math. Soc., 27 (1971), 275–279 | DOI | MR | Zbl
[31] J. Bourgain, “On the spectral type of Ornstein's class one transformation”, Israel J. Math., 84 (1993), 53–63 | DOI | MR | Zbl
[32] J. Bourgain, “On the correlation of the Mobius function with random rank-one systems”, J. Anal. Math., 120 (2013), 105–130 | DOI | MR | Zbl
[33] R. V. Chacon, “A geometric construction of measure preserving transformations”, Proc. Fifth Berkeley Sympos. Math. Statist. and Probability (Berkeley, Calif., 1965/66), v. 2, Contributions to Probability Theory, Univ. California Press, Berkeley, Calif., 1967, 335–360 | MR | Zbl
[34] R. V. Chacon, “Weakly mixing transformations which are not strongly mixing”, Proc. Am. Math. Soc., 22 (1969), 559–562 | DOI | MR | Zbl
[35] J. Chaika, B. Kra, A prime system with many self-joinings, arXiv: 1902.02421
[36] J. Chaika, D. Davis, The typical measure preserving transformation is not an interval exchange transformation, arXiv: 1812.10425 | MR
[37] D. Creutz, C. E. Silva, “Mixing on rank-one transformations”, Studia Math., 199 (2010), 43–72 | DOI | MR | Zbl
[38] A. I. Danilenko, “$(C, F)$-Actions in ergodic theory”, Geometry and dynamics of groups and spaces, Progr. Math., 265, Birkhauser, Basel, 2008, 325–351 | DOI | MR | Zbl
[39] A. I. Danilenko, “A survey on spectral multiplicities of ergodic actions”, Ergod. Th. Dynam. Sys., 33:1 (2013), 81–117 | DOI | MR | Zbl
[40] H. El Abdalaoui El, M. Lemańczyk, Th. de la Rue, “On spectral disjointness of powers for rank-one transformations and Mobius orthogonality”, J. Funct. Anal., 266:1 (2014), 284–317 | DOI | MR | Zbl
[41] M. Foreman, D. J. Rudolph, B. Weiss, “The conjugacy problem in ergodic theory”, Ann of Math. (2), 173:3 (2011), 1529–1586 | DOI | MR | Zbl
[42] E. Glasner, B. Host, D. Rudolph, “Simple systems and their higher order self-joinings”, Israel J. Math., 78 (1992), 131–142 | DOI | MR | Zbl
[43] B. Host, “Mixing of all orders and pairwise independent joinings of systems with singular spectrum”, Israel J. Math., 76 (1991), 289–298 | DOI | MR | Zbl
[44] É. Janvresse, T. de la Rue, V. V. Ryzhikov, “Around King's rank-one theorems: flows and $\mathbb{Z}^n$-actions”, Dynamical systems and group actions, Contemp. Math., 567, Amer. Math. Soc., Providence, RI, 2012, 143–161 | DOI | MR | Zbl
[45] É. Janvresse, A. A. Prikhod'ko, T. de la Rue, V. V. Ryzhikov, “Weak limits of powers of Chacon's automorphism”, Ergod. Th. Dynam. Sys., 35:1 (2015), 128–141 | DOI | MR | Zbl
[46] É. Janvresse, E. Roy, T. de la Rue, “Poisson suspensions and SuShis”, Ann. Sci. (4). Éc. Norm. Supér., 50:6 (2017), 1301–1334 | DOI | MR | Zbl
[47] A. del Junco, “Transformations with discrete spectrum are stacking transformations”, Can. J. Math., 28 (1976), 836–839 | DOI | MR | Zbl
[48] A. del Junco, A. M. Rahe, L. Swanson, “Chacon's automorphism has minimal self-joinings”, J. Analyse Math., 37 (1980), 276–284 | DOI | MR | Zbl
[49] A. del Junco, D. J. Rudolph, “A rank-one, rigid, simple, prime map”, Ergod. Th. Dynam. Sys., 7 (1987), 229–247 | DOI | MR | Zbl
[50] A. del Junco, “A simple map with no prime factors”, Israel J. Math., 104 (1998), 301–320 | DOI | MR | Zbl
[51] A. Katok, Combinatorial constructions in ergodic theory and dynamics, Univ. Lecture Ser., 30, Amer. Math. Soc., Providence, RI, 2003 | DOI | MR | Zbl
[52] S. A. Kalikow, “Twofold mixing implies threefold mixing for rank one transformations”, Ergod. Th. Dynam. Sys., 4 (1984), 237–259 | DOI | MR | Zbl
[53] J. L. King, “The commutant is the weak closure of the powers, for rank-1 transformations”, Ergod. Th. Dynam. Sys., 6 (1986), 363–384 | DOI | MR | Zbl
[54] J. L. King, “Joinings-rank and the structure of finite rank mixing transformation”, J. Analyse Math., 51 (1988), 182–227 | DOI | MR | Zbl
[55] J. L. King, “Ergodic properties where order 4 implies infinite order”, Israel J. Math., 80 (1992), 65–86 | DOI | MR | Zbl
[56] J. L. King, “The generic transformation has roots of all orders”, Colloq. Math., 84–85:2 (2000), 521–547 | DOI | MR | Zbl
[57] I. Klemes, K. Reinhold, “Rank one transformations with singular spectral type”, Israel J. Math., 98 (1997), 1–14 | DOI | MR | Zbl
[58] D. S. Ornstein, “On invariant measures”, Bull. Amer. Math. Soc., 66 (1960), 297–300 | DOI | MR | Zbl
[59] D. Ornstein, “On the root problem in ergodic theory”, Proc. Sixth Berkeley Symposium on Mathematical Statistics and Probability (Univ. California, Berkeley, Calif., 1970/1971), v. II, Probability theory, Univ. California Press, Berkeley, Calif., 1972, 347–356 | MR | Zbl
[60] A. A. Prikhod'ko, V. V. Ryzhikov, “Disjointness of the convolutions for Chacon's automorphism”, Colloq. Math., 84/85:1 (2000), 67–74 | DOI | MR | Zbl
[61] D. J. Rudolph, “An example of a measure preserving map with minimal self-joinings, and applications”, J. Analyse Math., 35 (1979), 97–122 | DOI | MR | Zbl
[62] T. de la Rue, J. de Sam Lazaro, “Une transformation générique peutetre insérée dans un flot”, Ann. Inst. H. Poincaré Probab. Statist., 39:1 (2003), 121–134 | DOI | MR | Zbl
[63] V. V. Ryzhikov, “Stochastic intertwinings and multiple mixing of dynamical systems”, J. Dynam. Control Systems, 2:1 (1996), 1–19 | DOI | MR | Zbl
[64] V. V. Ryzhikov, “Homogeneous spectrum, disjointness of convolutions, and mixing properties of dynamical systems”, Selected Russian Mathematics, 1 (1999), 13–24, arXiv: 1206.6093 | MR
[65] V. V. Ryzhikov, Weak closure theorem for double staircase actions, arXiv: 1108.0568
[66] V. V. Ryzhikov, On mixing constructions with algebraic spacers, arXiv: 1108.1508 | MR
[67] V. V. Ryzhikov, On mixing of staircase transformations, arXiv: 1108.3522
[68] V. V. Ryzhikov, On disjointness of mixing rank one actions, arXiv: 1109.0671 | MR
[69] V. V. Ryzhikov, Minimal self-joinings, bounded constructions, and weak closure of ergodic actions, arXiv: 1212.2602
[70] V. V. Ryzhikov, Chacon's type ergodic transformations with anbounded arithmetic spacers, arXiv: 1311.4524
[71] S. M. Ulam, A collection of mathematical problems, Interscience Tracts in Pure and Applied Mathematics, 8, Interscience Publishers, New York-London, 1960 | MR | Zbl
[72] Y. Zhang, “Bounded gaps between primes”, Ann. of Math. (2), 179:3 (2014), 1121–1174 | DOI | MR | Zbl