Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MMO_2020_81_2_a1, author = {A. V. Loboda}, title = {Holomorphically homogeneous real hypersurfaces in $ \mathbb{C}^3$}, journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva}, pages = {205--280}, publisher = {mathdoc}, volume = {81}, number = {2}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MMO_2020_81_2_a1/} }
A. V. Loboda. Holomorphically homogeneous real hypersurfaces in $ \mathbb{C}^3$. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 81 (2020) no. 2, pp. 205-280. http://geodesic.mathdoc.fr/item/MMO_2020_81_2_a1/
[1] R. S. Akopyan, A. V. Loboda, “O golomorfnykh realizatsiyakh nilpotentnykh algebr Li”, Funkts. analiz i ego pril., 53:2 (2019), 59–63 | MR | Zbl
[2] R. S. Akopyan, A. V. Loboda, “O golomorfnykh realizatsiyakh pyatimernykh algebr Li”, Algebra i analiz, 31:6 (2019), 1–37 | MR
[3] A. V. Atanov, A. V. Loboda, “Ob orbitakh odnoi nerazreshimoi 5-mernoi algebry Li”, Matem. fizika i kompyut. modelirovanie, 22:2 (2019), 5–20 | MR
[4] A. V. Atanov, I. G. Kossovskii, A. V. Loboda, “Ob orbitakh deistvii 5-mernykh nerazreshimykh algebr Li v trekhmernom kompleksnom prostranstve”, DAN, 487:6 (2019), 607–610 | Zbl
[5] A. V. Atanov, A. V. Loboda, “Razlozhimye pyatimernye algebry Li v zadache o golomorfnoi odnorodnosti v $\mathbb{C}^3$”, Itogi nauki i tekhn. Ser. Sovrem. mat. i ee pril. Temat. obz., 173, 2019, 86–115
[6] A. G. Vitushkin, V. V. Ezhov, N. G. Kruzhilin, “Prodolzhenie lokalnykh otobrazhenii psevdovypuklykh poverkhnostei”, Dokl. AN SSSR, 270:2 (1983), 271–274 | MR | Zbl
[7] A. G. Vitushkin, “Golomorfnye otobrazheniya i geometriya poverkhnostei”, Sovr. probl. matem., 7, VINITI, M., 1985, 167–226
[8] A. G. Vitushkin, “Veschestvenno-analiticheskie giperpoverkhnosti kompleksnykh mnogoobrazii”, UMN, 40:2 (1985), 3–31 | MR | Zbl
[9] B. A. Dubrovin, S. P. Novikov, A. T. Fomenko, Sovremennaya geometriya, Nauka, M., 1986 | MR
[10] V. V. Ezhov, A. V. Loboda, G. Shmalts, “Kanonicheskaya forma mnogochlena chetvertoi stepeni v normalnom uravnenii veschestvennoi giperpoverkhnosti v $\mathbb{C}^3$”, Matem. zametki, 66:4 (1999), 624–626 | Zbl
[11] A. V. Isaev, M. A. Mischenko, “Klassifikatsiya sfericheskikh trubchatykh giperpoverkhnostei, imeyuschikh v signature formy Levi odin minus”, Izv. AN SSSR. Ser. matem., 52:6 (1988), 1123–1153
[12] A. V. Loboda, “O razmernosti gruppy, tranzitivno deistvuyuschei na giperpoverkhnosti v $\mathbb{C}^3$”, Funkts. analiz i ego pril., 33:1 (1999), 68–71 | MR | Zbl
[13] A. V. Loboda, “Lokalnoe opisanie odnorodnykh veschestvennykh giperpoverkhnostei dvumernogo kompleksnogo prostranstva v terminakh ikh normalnykh uravnenii”, Funkts. analiz i ego pril., 34:2 (2000), 33–42 | MR | Zbl
[14] A. V. Loboda, “Odnorodnye strogo psevdovypuklye giperpoverkhnosti v $\mathbb{C}^3$ dvumernymi gruppami izotropii”, Matem. sb., 192:12 (2001), 3–24 | Zbl
[15] A. V. Loboda, “Vsyakaya golomorfno odnorodnaya trubka v $\mathbb{C}^2$ imeet affinno odnorodnoe osnovanie”, Sib. matem. zhurnal, 42:6 (2001), 1335–1339 | MR
[16] A. V. Loboda, “Odnorodnye veschestvennye giperpoverkhnosti v $\mathbb{C}^3$ dvumernymi gruppami izotropii”, Tr. MIAN, 235, 2001, 114–142 | Zbl
[17] A. V. Loboda, “Ob opredelenii odnorodnoi strogo psevdovypukloi giperpoverkhnosti po koeffitsientam ee normalnogo uravneniya”, Matem. zametki, 73:3 (2003), 453–456 | MR | Zbl
[18] A. V. Loboda, V. I. Sukovykh, “Ispolzovanie kompyuternykh algoritmov v zadache koeffitsientnogo opisaniya odnorodnykh poverkhnostei”, Vestnik VGU. Cistemnyi analiz, 2015, no. 1, 14–22
[19] G. M. Mubarakzyanov, “O razreshimykh algebrakh Li”, Izv. vuzov. Matem., 1963, no. 1, 114–123 | MR | Zbl
[20] G. M. Mubarakzyanov, “Klassifikatsiya veschestvennykh struktur algebr Li pyatogo poryadka”, Izv. vuzov. Matem., 1963, no. 3, 99–106 | Zbl
[21] S. I. Pinchuk, “Golomorfnye otobrazheniya v $\mathbb{C}^n$ i problema golomorfnoi ekvivalentnosti”, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 9, VINITI, M., 1986, 195–223
[22] B. V. Shabat, Vvedenie v kompleksnyi analiz, v. 2, Funktsii neskolkikh peremennykh, Nauka, M., 1985
[23] A. P. Shirokov, P. A. Shirokov, Affinnaya differentsialnaya geometriya, Fizmatgiz, M., 1959
[24] H. Azad, A. Huckleberry, W. Richthofer, “Homogeneous CR-manifolds”, J. Reine Angew. Math., 358 (1985), 125–154 | MR | Zbl
[25] M. S. Baouendi, L. P. Rotschild, “Geometric properties of mappings between hypersurfaces in complex space”, J. Diff. Geom., 31:2 (1990), 473–499 | MR | Zbl
[26] V. K. Beloshapka, I. G. Kossovskiy, “Homogeneous hypersurfaces in $\mathbb{C}^3$, associated with a model CR-cubic”, J. Geom. Anal., 20:3 (2010), 538–564 | DOI | MR | Zbl
[27] D. Burns Jr., S. Shneider, “Spherical hypersurfaces in complex manifolds”, Inv. Math., 33:3 (1976), 223–246 | DOI | MR | Zbl
[28] E. Cartan, “Sur la géométrie pseudoconforme des hypersurfaces de l'espace de deux variables complexes”, Ann. Math. Pura Appl, 11:4 (1932), 17–90 | MR
[29] S. S. Chern, J. K. Moser, “Real hypersurfaces in complex manifolds”, Acta Math., 133 (1974), 219–271 | DOI | MR
[30] J. Dadok, P. Yang, “Automorphisms of tube domains and spherical hypersurfaces”, Amer. J. Math., 107:4 (1985), 999–1013 | DOI | MR | Zbl
[31] B. Doubrov, A. Medvedev, D. The, Homogeneous Levi non-degenerate hypersurfaces in $\mathbb{C}^3$, arXiv: 1711.02389v1 | MR
[32] B. Doubrov, B. Komrakov, M. Rabinovich, “Homogeneous surfaces in the three-dimensional affine geometry”, Geometry and topology of submanifolds, v. VIII, World Sci, NJ, 1996, 168–178 | MR | Zbl
[33] B. Doubrov, J. Merker, D. The, Classification of simply transitive Levi non-degenerate hypersurfaces in $\mathbb{C}^3$, arXiv: 2010.06334v1
[34] M. Eastwood, V. Ezhov, “On affine normal forms and a classification of homogeneous surfaces in affine three-space”, Geom. Dedicata, 77 (1999), 11–69 | DOI | MR | Zbl
[35] G. Fels, W. Kaup, “Classification of Levi degenerate homogeneous CR-manifolds in dimension 5”, Acta Math., 201 (2008), 1–82 | DOI | MR | Zbl
[36] H. Guggenheimer, Differential geometry, McGraw-Hill, New York, 1963 | MR | Zbl
[37] A. V. Isaev, “Rigid spherical hypersurfaces”, Complex Variables Theory Appl., 31 (1996), 141–163 | DOI | MR | Zbl
[38] I. Kossovskiy, A. Loboda, Classification of homogeneous strictly pseudoconvex hypersurfaces in $\mathbb{C}^3$, arXiv: 1906.11345
[39] A. V. Loboda, R. S. Akopyan, V. V. Krutskikh, “On the orbits of nilpotent 7-dimensional Lie algebras in 4-dimensional complex space”, Zhurn. SFU. Ser. Matem. i fiz., 13:3 (2020), 360–372 | MR
[40] A. Morimoto, T. Nagano, “On pseudo-conformal transformations of hypersurfaces”, J. Math. Soc. Japan, 15:3 (1963), 289–300 | DOI | MR | Zbl
[41] K. Nomizu, T. Sasaki, “A new model of unimodular-affinely homogeneous surfaces”, Manuscr. Math., 73:1 (1991), 39–44 | DOI | MR | Zbl
[42] H. Poincaré, “Les fonctions analytiques de deux variables et la représentation conforme”, Rend. Circ. Mat. Palermo, 1907, 185–220 | DOI | Zbl
[43] D. Repovš, A. B. Skopenkov, E. V. Ščhepin, “$C^1$-homogeneous compacta in $\mathbb{R}^n$ are $C^1$-submanifolds of $\mathbb{R}^n$”, Proc. Amer. Math. Soc., 124 (1996), 1219–1226 | DOI | MR | Zbl
[44] M. Sabzevari, A. Hashemi, B. M. Alizadeh, J. Merker, Applications of differential algebra for computing Lie algebras of infinitesimal CR-automorphisms, arXiv: 1212.3070
[45] L. Shnobl, P. Winternitz, Classification and identification of Lie algebras, CRM Monograph Series, 33, AMS, RI, 2014 | DOI | MR
[46] N. Tanaka, “On the pseudo-conformal geometry of hypersurfaces of the space of $n$ complex variables”, J. Math. Soc. Japan, 14:4 (1962), 397–429 | DOI | MR | Zbl
[47] L. Vrancken, “Degenerate homogeneous affine surfaces in $\mathbb{R}^n$”, Geom. Dedicata, 53:3 (1994), 333–351 | DOI | MR | Zbl
[48] J. Winkelmann, The classification of three-dimensional homogeneous complex manifolds, Lecture Notes in Math., 1602, Springer, 1995 | DOI | MR
[49] D. Zaitsev, “On different notions of homogeneity for CR-manifolds”, Asian J. Math., 11:2 (2007), 331–340 | DOI | MR | Zbl