Holomorphically homogeneous real hypersurfaces in $ \mathbb{C}^3$
Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 81 (2020) no. 2, pp. 205-280.

Voir la notice de l'article provenant de la source Math-Net.Ru

We discuss a complete solution of the problem on the local description and classification of holomorphically homogeneous real hypersurfaces in $ \mathbb{C}^3$. Large families of such manifolds have been studied by several groups of mathematicians using various approaches in the last 25 years. The final results in this problem have been obtained by the present author with the use of the classification of abstract five-dimensional real Lie algebras and the technique of their holomorphic representations in complex 3-space. The complete list of pairwise nonequivalent holomorphically homogeneous hypersurfaces in our classification contains forty-seven types of such manifolds, including standalone hypersurfaces as well as one- and two-parameter families of hypersurfaces.
@article{MMO_2020_81_2_a1,
     author = {A. V. Loboda},
     title = {Holomorphically homogeneous real hypersurfaces in $ \mathbb{C}^3$},
     journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {205--280},
     publisher = {mathdoc},
     volume = {81},
     number = {2},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MMO_2020_81_2_a1/}
}
TY  - JOUR
AU  - A. V. Loboda
TI  - Holomorphically homogeneous real hypersurfaces in $ \mathbb{C}^3$
JO  - Trudy Moskovskogo matematičeskogo obŝestva
PY  - 2020
SP  - 205
EP  - 280
VL  - 81
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MMO_2020_81_2_a1/
LA  - ru
ID  - MMO_2020_81_2_a1
ER  - 
%0 Journal Article
%A A. V. Loboda
%T Holomorphically homogeneous real hypersurfaces in $ \mathbb{C}^3$
%J Trudy Moskovskogo matematičeskogo obŝestva
%D 2020
%P 205-280
%V 81
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MMO_2020_81_2_a1/
%G ru
%F MMO_2020_81_2_a1
A. V. Loboda. Holomorphically homogeneous real hypersurfaces in $ \mathbb{C}^3$. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 81 (2020) no. 2, pp. 205-280. http://geodesic.mathdoc.fr/item/MMO_2020_81_2_a1/

[1] R. S. Akopyan, A. V. Loboda, “O golomorfnykh realizatsiyakh nilpotentnykh algebr Li”, Funkts. analiz i ego pril., 53:2 (2019), 59–63 | MR | Zbl

[2] R. S. Akopyan, A. V. Loboda, “O golomorfnykh realizatsiyakh pyatimernykh algebr Li”, Algebra i analiz, 31:6 (2019), 1–37 | MR

[3] A. V. Atanov, A. V. Loboda, “Ob orbitakh odnoi nerazreshimoi 5-mernoi algebry Li”, Matem. fizika i kompyut. modelirovanie, 22:2 (2019), 5–20 | MR

[4] A. V. Atanov, I. G. Kossovskii, A. V. Loboda, “Ob orbitakh deistvii 5-mernykh nerazreshimykh algebr Li v trekhmernom kompleksnom prostranstve”, DAN, 487:6 (2019), 607–610 | Zbl

[5] A. V. Atanov, A. V. Loboda, “Razlozhimye pyatimernye algebry Li v zadache o golomorfnoi odnorodnosti v $\mathbb{C}^3$”, Itogi nauki i tekhn. Ser. Sovrem. mat. i ee pril. Temat. obz., 173, 2019, 86–115

[6] A. G. Vitushkin, V. V. Ezhov, N. G. Kruzhilin, “Prodolzhenie lokalnykh otobrazhenii psevdovypuklykh poverkhnostei”, Dokl. AN SSSR, 270:2 (1983), 271–274 | MR | Zbl

[7] A. G. Vitushkin, “Golomorfnye otobrazheniya i geometriya poverkhnostei”, Sovr. probl. matem., 7, VINITI, M., 1985, 167–226

[8] A. G. Vitushkin, “Veschestvenno-analiticheskie giperpoverkhnosti kompleksnykh mnogoobrazii”, UMN, 40:2 (1985), 3–31 | MR | Zbl

[9] B. A. Dubrovin, S. P. Novikov, A. T. Fomenko, Sovremennaya geometriya, Nauka, M., 1986 | MR

[10] V. V. Ezhov, A. V. Loboda, G. Shmalts, “Kanonicheskaya forma mnogochlena chetvertoi stepeni v normalnom uravnenii veschestvennoi giperpoverkhnosti v $\mathbb{C}^3$”, Matem. zametki, 66:4 (1999), 624–626 | Zbl

[11] A. V. Isaev, M. A. Mischenko, “Klassifikatsiya sfericheskikh trubchatykh giperpoverkhnostei, imeyuschikh v signature formy Levi odin minus”, Izv. AN SSSR. Ser. matem., 52:6 (1988), 1123–1153

[12] A. V. Loboda, “O razmernosti gruppy, tranzitivno deistvuyuschei na giperpoverkhnosti v $\mathbb{C}^3$”, Funkts. analiz i ego pril., 33:1 (1999), 68–71 | MR | Zbl

[13] A. V. Loboda, “Lokalnoe opisanie odnorodnykh veschestvennykh giperpoverkhnostei dvumernogo kompleksnogo prostranstva v terminakh ikh normalnykh uravnenii”, Funkts. analiz i ego pril., 34:2 (2000), 33–42 | MR | Zbl

[14] A. V. Loboda, “Odnorodnye strogo psevdovypuklye giperpoverkhnosti v $\mathbb{C}^3$ dvumernymi gruppami izotropii”, Matem. sb., 192:12 (2001), 3–24 | Zbl

[15] A. V. Loboda, “Vsyakaya golomorfno odnorodnaya trubka v $\mathbb{C}^2$ imeet affinno odnorodnoe osnovanie”, Sib. matem. zhurnal, 42:6 (2001), 1335–1339 | MR

[16] A. V. Loboda, “Odnorodnye veschestvennye giperpoverkhnosti v $\mathbb{C}^3$ dvumernymi gruppami izotropii”, Tr. MIAN, 235, 2001, 114–142 | Zbl

[17] A. V. Loboda, “Ob opredelenii odnorodnoi strogo psevdovypukloi giperpoverkhnosti po koeffitsientam ee normalnogo uravneniya”, Matem. zametki, 73:3 (2003), 453–456 | MR | Zbl

[18] A. V. Loboda, V. I. Sukovykh, “Ispolzovanie kompyuternykh algoritmov v zadache koeffitsientnogo opisaniya odnorodnykh poverkhnostei”, Vestnik VGU. Cistemnyi analiz, 2015, no. 1, 14–22

[19] G. M. Mubarakzyanov, “O razreshimykh algebrakh Li”, Izv. vuzov. Matem., 1963, no. 1, 114–123 | MR | Zbl

[20] G. M. Mubarakzyanov, “Klassifikatsiya veschestvennykh struktur algebr Li pyatogo poryadka”, Izv. vuzov. Matem., 1963, no. 3, 99–106 | Zbl

[21] S. I. Pinchuk, “Golomorfnye otobrazheniya v $\mathbb{C}^n$ i problema golomorfnoi ekvivalentnosti”, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 9, VINITI, M., 1986, 195–223

[22] B. V. Shabat, Vvedenie v kompleksnyi analiz, v. 2, Funktsii neskolkikh peremennykh, Nauka, M., 1985

[23] A. P. Shirokov, P. A. Shirokov, Affinnaya differentsialnaya geometriya, Fizmatgiz, M., 1959

[24] H. Azad, A. Huckleberry, W. Richthofer, “Homogeneous CR-manifolds”, J. Reine Angew. Math., 358 (1985), 125–154 | MR | Zbl

[25] M. S. Baouendi, L. P. Rotschild, “Geometric properties of mappings between hypersurfaces in complex space”, J. Diff. Geom., 31:2 (1990), 473–499 | MR | Zbl

[26] V. K. Beloshapka, I. G. Kossovskiy, “Homogeneous hypersurfaces in $\mathbb{C}^3$, associated with a model CR-cubic”, J. Geom. Anal., 20:3 (2010), 538–564 | DOI | MR | Zbl

[27] D. Burns Jr., S. Shneider, “Spherical hypersurfaces in complex manifolds”, Inv. Math., 33:3 (1976), 223–246 | DOI | MR | Zbl

[28] E. Cartan, “Sur la géométrie pseudoconforme des hypersurfaces de l'espace de deux variables complexes”, Ann. Math. Pura Appl, 11:4 (1932), 17–90 | MR

[29] S. S. Chern, J. K. Moser, “Real hypersurfaces in complex manifolds”, Acta Math., 133 (1974), 219–271 | DOI | MR

[30] J. Dadok, P. Yang, “Automorphisms of tube domains and spherical hypersurfaces”, Amer. J. Math., 107:4 (1985), 999–1013 | DOI | MR | Zbl

[31] B. Doubrov, A. Medvedev, D. The, Homogeneous Levi non-degenerate hypersurfaces in $\mathbb{C}^3$, arXiv: 1711.02389v1 | MR

[32] B. Doubrov, B. Komrakov, M. Rabinovich, “Homogeneous surfaces in the three-dimensional affine geometry”, Geometry and topology of submanifolds, v. VIII, World Sci, NJ, 1996, 168–178 | MR | Zbl

[33] B. Doubrov, J. Merker, D. The, Classification of simply transitive Levi non-degenerate hypersurfaces in $\mathbb{C}^3$, arXiv: 2010.06334v1

[34] M. Eastwood, V. Ezhov, “On affine normal forms and a classification of homogeneous surfaces in affine three-space”, Geom. Dedicata, 77 (1999), 11–69 | DOI | MR | Zbl

[35] G. Fels, W. Kaup, “Classification of Levi degenerate homogeneous CR-manifolds in dimension 5”, Acta Math., 201 (2008), 1–82 | DOI | MR | Zbl

[36] H. Guggenheimer, Differential geometry, McGraw-Hill, New York, 1963 | MR | Zbl

[37] A. V. Isaev, “Rigid spherical hypersurfaces”, Complex Variables Theory Appl., 31 (1996), 141–163 | DOI | MR | Zbl

[38] I. Kossovskiy, A. Loboda, Classification of homogeneous strictly pseudoconvex hypersurfaces in $\mathbb{C}^3$, arXiv: 1906.11345

[39] A. V. Loboda, R. S. Akopyan, V. V. Krutskikh, “On the orbits of nilpotent 7-dimensional Lie algebras in 4-dimensional complex space”, Zhurn. SFU. Ser. Matem. i fiz., 13:3 (2020), 360–372 | MR

[40] A. Morimoto, T. Nagano, “On pseudo-conformal transformations of hypersurfaces”, J. Math. Soc. Japan, 15:3 (1963), 289–300 | DOI | MR | Zbl

[41] K. Nomizu, T. Sasaki, “A new model of unimodular-affinely homogeneous surfaces”, Manuscr. Math., 73:1 (1991), 39–44 | DOI | MR | Zbl

[42] H. Poincaré, “Les fonctions analytiques de deux variables et la représentation conforme”, Rend. Circ. Mat. Palermo, 1907, 185–220 | DOI | Zbl

[43] D. Repovš, A. B. Skopenkov, E. V. Ščhepin, “$C^1$-homogeneous compacta in $\mathbb{R}^n$ are $C^1$-submanifolds of $\mathbb{R}^n$”, Proc. Amer. Math. Soc., 124 (1996), 1219–1226 | DOI | MR | Zbl

[44] M. Sabzevari, A. Hashemi, B. M. Alizadeh, J. Merker, Applications of differential algebra for computing Lie algebras of infinitesimal CR-automorphisms, arXiv: 1212.3070

[45] L. Shnobl, P. Winternitz, Classification and identification of Lie algebras, CRM Monograph Series, 33, AMS, RI, 2014 | DOI | MR

[46] N. Tanaka, “On the pseudo-conformal geometry of hypersurfaces of the space of $n$ complex variables”, J. Math. Soc. Japan, 14:4 (1962), 397–429 | DOI | MR | Zbl

[47] L. Vrancken, “Degenerate homogeneous affine surfaces in $\mathbb{R}^n$”, Geom. Dedicata, 53:3 (1994), 333–351 | DOI | MR | Zbl

[48] J. Winkelmann, The classification of three-dimensional homogeneous complex manifolds, Lecture Notes in Math., 1602, Springer, 1995 | DOI | MR

[49] D. Zaitsev, “On different notions of homogeneity for CR-manifolds”, Asian J. Math., 11:2 (2007), 331–340 | DOI | MR | Zbl