Applications of noncommutative geometry in function theory and mathematical physics
Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 81 (2020) no. 2, pp. 145-203.

Voir la notice de l'article provenant de la source Math-Net.Ru

We review some applications of noncommutative geometry to function theory and mathematical physics. In the first case we discuss relations between the spaces of real variables and operator algebras. In the second case we deal with quantization of universal Techmüller space and quantum Hall effect.
@article{MMO_2020_81_2_a0,
     author = {A. G. Sergeev},
     title = {Applications of noncommutative geometry in function theory and mathematical physics},
     journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {145--203},
     publisher = {mathdoc},
     volume = {81},
     number = {2},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MMO_2020_81_2_a0/}
}
TY  - JOUR
AU  - A. G. Sergeev
TI  - Applications of noncommutative geometry in function theory and mathematical physics
JO  - Trudy Moskovskogo matematičeskogo obŝestva
PY  - 2020
SP  - 145
EP  - 203
VL  - 81
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MMO_2020_81_2_a0/
LA  - ru
ID  - MMO_2020_81_2_a0
ER  - 
%0 Journal Article
%A A. G. Sergeev
%T Applications of noncommutative geometry in function theory and mathematical physics
%J Trudy Moskovskogo matematičeskogo obŝestva
%D 2020
%P 145-203
%V 81
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MMO_2020_81_2_a0/
%G ru
%F MMO_2020_81_2_a0
A. G. Sergeev. Applications of noncommutative geometry in function theory and mathematical physics. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 81 (2020) no. 2, pp. 145-203. http://geodesic.mathdoc.fr/item/MMO_2020_81_2_a0/

[1] L. Alfors, Lektsii po kvazikonformnym otobrazheniyam, Mir, M., 1969

[2] N. Ashkroft, N. Mermin, Fizika tverdogo tela, Mir, M., 1979

[3] F. A. Berezin, M. A. Shubin, Uravnenie Shredingera, MGU, M., 1983

[4] J. Bellisard, A. van Elst, H. Schulz-Baldes, “The noncommutative geometry of the quantum Hall effect”, J. Math. Phys., 35 (1994), 5373–5451 | DOI | MR

[5] F. A. Berezin, Metod vtorichnogo kvantovaniya, Nauka, M., 1986 | MR

[6] R. Bowen, “Hausdorff dimension of quasi-circles”, Publ. Math. IHES, 50 (1979), 259–273 | MR

[7] A. Carey, K. Hannabuss, V. Mathai, P. J. McCan, “Quantum Hall effect on the hyperbolic plane”, Commun. Math. Phys., 190 (1998), 629–673 | DOI | MR | Zbl

[8] A. Connes, Noncommutative geometry, Academic Press, San Diego, 1994 | MR | Zbl

[9] H. M. Farkas, I. Kra, Riemann surfaces, Springer, New York, 1992 | MR | Zbl

[10] J. M. Gracia-Bondía, J. C. Varilly, H. Figueroa, Elements of noncommutative geometry, Birkhauser, Boston, 2001 | MR | Zbl

[11] S. Janson, T. H. Wolff, “Schatten classes and commutators of singular integral operators”, Ark. Mat., 20 (1982), 301–310 | DOI | MR | Zbl

[12] Yu. Kordyukov, V. Mathai, M. Shubin, “Equivalence of spectral projection in semi-classical limit and a vanishing theorem for higher traces in K-theory”, J. Reine Angew. Math., 581 (2005), 193–236 | DOI | MR | Zbl

[13] E. M. Lifshits, L. P. Pitaevskii, Statisticheskaya fizika, v. 2, Nauka, M., 1978 | MR

[14] R. B. Laughlin, “Quantized Hall conductivity in two dimensions”, Phys. Rev., B23 (1981), 5632 | DOI

[15] H. B. Lawson jr., M.-L. Michelsohn, Spin geometry, Princeton University Press, Princeton, New Jersey, 1989 | MR | Zbl

[16] O. Lehto, Univalent functions and Teichmuller spaces, Grad. Texts Math., 109, Springer, New York, 1987 | DOI | MR | Zbl

[17] M. Marcolli, V. Mathai, “Towards the fractional quantum Hall effect: a noncommutative geometry perspective”, Noncommutative Geometry and Number Theory, Aspects Math., E 37, Friedr. Vieweg Verlag, Wiesbaden, 2006, 235–261 | MR

[18] S. Nag, D. Sullivan, “Teichmuller theory and the universal period mapping via quantum calculus and the $H^{1/2}$ space on the circle”, Osaka J. Math., 32 (1995), 1–34 | MR | Zbl

[19] M. A. Naimark, Normirovannye koltsa, Fizmatlit, M., 2010 | MR

[20] V. V. Peller, Operatory Gankelya i ikh prilozheniya, RKhD, Izhevsk, 2005

[21] S. C. Power, Hankel operators on Hilbert space, Research Notes in Math., 64, Pitman, Boston–London–Melbourne, 1982 | MR | Zbl

[22] H. M. Reimann, “Ordinary differential equations and quasiconformal mappings”, Invent. Math., 33 (1976), 247–270 | DOI | MR | Zbl

[23] U. Rudin, Funktsionalnyi analiz, Mir, M., 1975

[24] G. Segal, “Unitary representations of some infinite dimensional groups”, Commun. Math. Phys., 80 (1981), 301–342 | DOI | MR | Zbl

[25] A. G. Sergeev, Lectures on universal Teichmuller space, EMS, Zürich, 2014 | MR | Zbl

[26] A. G. Sergeev, Geometricheskoe kvantovanie prostranstv petel, Sovr. probl. matem., 13, MIAN, M., 2009

[27] A. G. Sergeev, “Kvantovoe ischislenie i idealy v algebre kompaktnykh operatorov”, Tr. MIAN, 306, 2019, 227–234 | Zbl

[28] A. Sergeev, “Quantum differentials and function spaces”, Sb. Trudov konferentsii posv. 70-letiyu N. Vasilevskogo, Birkhauser, 2020 (to appear) | Zbl

[29] A. Sergeev, “Quantum Hall effect and non-commutative geometry”, Sb. Trudov konferentsii, posv. pamyati B.Yu. Sternina, Birkhauser, 2020 (to appear) | Zbl

[30] A. G. Sergeev, “V poiskakh beskonechnomernoi kelerovoi geometrii”, UMN, 75:2 (2020), 133–184 | MR | Zbl

[31] A. Sergeev, “Universal Teichmuller space as a non-trivial example of infinite-dimensional complex manifolds”, Handbook of Teichmüller Theory, v. 7, Lect. Math. Theor. Phys., 30, EMS, Berlin, 2020, 195–213 | Zbl

[32] A. G. Sergeev, “Magnitnaya teoriya Blokha i nekommutativnaya geometriya”, Tr. MIAN, 279, 2012, 193–205 | Zbl

[33] A. G. Sergeev, “Drobnyi kvantovyi effekt Kholla s tochki zreniya nekommutativnoi geometrii”, Tr. Seminara po vektornomu i tenzornomu analizu, 28, MGU, M., 2012, 250–270

[34] I. Stein, Singulyarnye integraly i differentsialnye svoistva funktsii, Mir, M., 1973

[35] I. Stein, G. Veis, Vvedenie v garmonicheskii analiz na evklidovykh prostranstvakh, Mir, M., 1974

[36] D. J. Thouless, M. Kohmoto, M. P. Nightingale, M. den Nijs, “Quantized Hall conductance in a twodimensional periodic potential”, Phys. Rev. Lett., 49:6 (1982), 405–408 | DOI

[37] J. Xia, “Geometric invariants of the quantum Hall effect”, Commun. Math. Phys., 119 (1988), 29–50 | DOI | MR | Zbl