A description of linearly additive metrics on $ \mathbb{R}^n$
Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 81 (2020) no. 1, pp. 137-144.

Voir la notice de l'article provenant de la source Math-Net.Ru

There is an integral-geometric approach, proposed by Busemann, for building linearly additive metrics on $ \mathbb{R}^n $ (it uses hyperplanes). Hilbert's Fourth Problem was solved with the help of this construction. In this article, we present a new description (using straight lines) of linearly additive metrics on $ \mathbb{R}^n$, generated by a norm. There is a link between this description and the sine transform.
@article{MMO_2020_81_1_a5,
     author = {R. H. Aramyan},
     title = {A description of linearly additive metrics on $ \mathbb{R}^n$},
     journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {137--144},
     publisher = {mathdoc},
     volume = {81},
     number = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MMO_2020_81_1_a5/}
}
TY  - JOUR
AU  - R. H. Aramyan
TI  - A description of linearly additive metrics on $ \mathbb{R}^n$
JO  - Trudy Moskovskogo matematičeskogo obŝestva
PY  - 2020
SP  - 137
EP  - 144
VL  - 81
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MMO_2020_81_1_a5/
LA  - ru
ID  - MMO_2020_81_1_a5
ER  - 
%0 Journal Article
%A R. H. Aramyan
%T A description of linearly additive metrics on $ \mathbb{R}^n$
%J Trudy Moskovskogo matematičeskogo obŝestva
%D 2020
%P 137-144
%V 81
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MMO_2020_81_1_a5/
%G ru
%F MMO_2020_81_1_a5
R. H. Aramyan. A description of linearly additive metrics on $ \mathbb{R}^n$. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 81 (2020) no. 1, pp. 137-144. http://geodesic.mathdoc.fr/item/MMO_2020_81_1_a5/

[1] R. V. Ambartzumian, “A note on pseudo-metrics on the plane”, Z. Wahrsch. Verw. Gebiete, 37 (1976), 145–155 | DOI | MR | Zbl

[2] R. V. Ambartzumian, Factorization calculus and geometric probability, Cambridge University Press, 1990 | MR | Zbl

[3] R. V. Ambartzumian, “Combinatorial integral geometry, metrics, and zonoids”, Acta Appl. Math., 9 (1987), 3–27 | DOI | MR | Zbl

[4] R. Alexander, “Planes for which the lines are the shortest paths between points”, Illinois J. Math., 22 (1978), 177–190 | MR | Zbl

[5] J. C. Álvarez Paiva, “Hilbert's fourth problem in two dimensions”, Mass Selecta, Amer. Math. Soc., Providence, RI, 2003, 165–183 | MR | Zbl

[6] R. G. Aramyan, “Sinus-predstavlenie tsentralno-simmetrichnykh vypuklykh tel”, Izvestiya NAN Armenii. Matematika, 53:6 (2018), 3–12 | MR | Zbl

[7] R. Aramyan, “Generalized Radon transform on the sphere”, Analysis (Munich), 30:3 (2010), 271–284 | MR | Zbl

[8] H. Busemann, “Problem IV: Desarguesian spaces”, Mathematical developments arising from Hilbert problems, Proc. Sympos. Pure Math., XXVIII, Amer. Math. Soc., Providence, R.I., 1976, 131–141 | DOI | MR

[9] W. Blaschke, Kreis und Kugel, W. de Gruyter, Berlin, 1956 (German) | MR | Zbl

[10] P. Goodey, W. Weil, “Zonoids and generalizations”, Handbook of convex geometry, North Holland, Amsterdam, 1993, 1297–1326 | DOI | MR | Zbl

[11] H. Groemer, Geometric applications of Fourier series and spherical harmonics, Encyclopedia of Mathematics and its Applications, 61, Cambridge University Press, Cambridge, 1996 | MR | Zbl

[12] G. Hamel, “Über die Geometrieen in denen die Geraden die Kürzesten sind”, Math. Ann., 57 (1903), 231–264 | DOI | MR | Zbl

[13] S. Helgason, The Radon transform, Progress in Mathematics, 5, Birkhauser, Basel–Boston, 1980 | DOI | MR | Zbl

[14] A. V. Pogorelov, Chetvertaya problema Gilberta, Nauka, M., 1974 | MR

[15] R. Schneider, “Crofton measures in projective Finsler spaces”, Integral geometry and convexity, World Sci. Publ., Hackensack, NJ, 2006, 67–98 | DOI | MR | Zbl

[16] R. Schneider, “On integral geometry in projective Finsler spaces”, Journal of Contemporary Mathematical Analysis (Armenian Academy of Sciences), 37:1 (2002), 34–51 | MR

[17] R. Schneider, “Zu einem Problem von Shephard über die Projektionen konvexer Körper”, Math. Z., 101 (1967), 71–82 | DOI | MR | Zbl