A description of linearly additive metrics on $ \mathbb{R}^n$
Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 81 (2020) no. 1, pp. 137-144

Voir la notice de l'article provenant de la source Math-Net.Ru

There is an integral-geometric approach, proposed by Busemann, for building linearly additive metrics on $ \mathbb{R}^n $ (it uses hyperplanes). Hilbert's Fourth Problem was solved with the help of this construction. In this article, we present a new description (using straight lines) of linearly additive metrics on $ \mathbb{R}^n$, generated by a norm. There is a link between this description and the sine transform.
@article{MMO_2020_81_1_a5,
     author = {R. H. Aramyan},
     title = {A description of linearly additive metrics on $ \mathbb{R}^n$},
     journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {137--144},
     publisher = {mathdoc},
     volume = {81},
     number = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MMO_2020_81_1_a5/}
}
TY  - JOUR
AU  - R. H. Aramyan
TI  - A description of linearly additive metrics on $ \mathbb{R}^n$
JO  - Trudy Moskovskogo matematičeskogo obŝestva
PY  - 2020
SP  - 137
EP  - 144
VL  - 81
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MMO_2020_81_1_a5/
LA  - ru
ID  - MMO_2020_81_1_a5
ER  - 
%0 Journal Article
%A R. H. Aramyan
%T A description of linearly additive metrics on $ \mathbb{R}^n$
%J Trudy Moskovskogo matematičeskogo obŝestva
%D 2020
%P 137-144
%V 81
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MMO_2020_81_1_a5/
%G ru
%F MMO_2020_81_1_a5
R. H. Aramyan. A description of linearly additive metrics on $ \mathbb{R}^n$. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 81 (2020) no. 1, pp. 137-144. http://geodesic.mathdoc.fr/item/MMO_2020_81_1_a5/