Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MMO_2020_81_1_a5, author = {R. H. Aramyan}, title = {A description of linearly additive metrics on $ \mathbb{R}^n$}, journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva}, pages = {137--144}, publisher = {mathdoc}, volume = {81}, number = {1}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MMO_2020_81_1_a5/} }
R. H. Aramyan. A description of linearly additive metrics on $ \mathbb{R}^n$. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 81 (2020) no. 1, pp. 137-144. http://geodesic.mathdoc.fr/item/MMO_2020_81_1_a5/
[1] R. V. Ambartzumian, “A note on pseudo-metrics on the plane”, Z. Wahrsch. Verw. Gebiete, 37 (1976), 145–155 | DOI | MR | Zbl
[2] R. V. Ambartzumian, Factorization calculus and geometric probability, Cambridge University Press, 1990 | MR | Zbl
[3] R. V. Ambartzumian, “Combinatorial integral geometry, metrics, and zonoids”, Acta Appl. Math., 9 (1987), 3–27 | DOI | MR | Zbl
[4] R. Alexander, “Planes for which the lines are the shortest paths between points”, Illinois J. Math., 22 (1978), 177–190 | MR | Zbl
[5] J. C. Álvarez Paiva, “Hilbert's fourth problem in two dimensions”, Mass Selecta, Amer. Math. Soc., Providence, RI, 2003, 165–183 | MR | Zbl
[6] R. G. Aramyan, “Sinus-predstavlenie tsentralno-simmetrichnykh vypuklykh tel”, Izvestiya NAN Armenii. Matematika, 53:6 (2018), 3–12 | MR | Zbl
[7] R. Aramyan, “Generalized Radon transform on the sphere”, Analysis (Munich), 30:3 (2010), 271–284 | MR | Zbl
[8] H. Busemann, “Problem IV: Desarguesian spaces”, Mathematical developments arising from Hilbert problems, Proc. Sympos. Pure Math., XXVIII, Amer. Math. Soc., Providence, R.I., 1976, 131–141 | DOI | MR
[9] W. Blaschke, Kreis und Kugel, W. de Gruyter, Berlin, 1956 (German) | MR | Zbl
[10] P. Goodey, W. Weil, “Zonoids and generalizations”, Handbook of convex geometry, North Holland, Amsterdam, 1993, 1297–1326 | DOI | MR | Zbl
[11] H. Groemer, Geometric applications of Fourier series and spherical harmonics, Encyclopedia of Mathematics and its Applications, 61, Cambridge University Press, Cambridge, 1996 | MR | Zbl
[12] G. Hamel, “Über die Geometrieen in denen die Geraden die Kürzesten sind”, Math. Ann., 57 (1903), 231–264 | DOI | MR | Zbl
[13] S. Helgason, The Radon transform, Progress in Mathematics, 5, Birkhauser, Basel–Boston, 1980 | DOI | MR | Zbl
[14] A. V. Pogorelov, Chetvertaya problema Gilberta, Nauka, M., 1974 | MR
[15] R. Schneider, “Crofton measures in projective Finsler spaces”, Integral geometry and convexity, World Sci. Publ., Hackensack, NJ, 2006, 67–98 | DOI | MR | Zbl
[16] R. Schneider, “On integral geometry in projective Finsler spaces”, Journal of Contemporary Mathematical Analysis (Armenian Academy of Sciences), 37:1 (2002), 34–51 | MR
[17] R. Schneider, “Zu einem Problem von Shephard über die Projektionen konvexer Körper”, Math. Z., 101 (1967), 71–82 | DOI | MR | Zbl