Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MMO_2020_81_1_a3, author = {Edmond W. H. Lee}, title = {Non-Specht variety generated by an involution semigroup of order five}, journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva}, pages = {105--115}, publisher = {mathdoc}, volume = {81}, number = {1}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/MMO_2020_81_1_a3/} }
TY - JOUR AU - Edmond W. H. Lee TI - Non-Specht variety generated by an involution semigroup of order five JO - Trudy Moskovskogo matematičeskogo obŝestva PY - 2020 SP - 105 EP - 115 VL - 81 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MMO_2020_81_1_a3/ LA - en ID - MMO_2020_81_1_a3 ER -
Edmond W. H. Lee. Non-Specht variety generated by an involution semigroup of order five. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 81 (2020) no. 1, pp. 105-115. http://geodesic.mathdoc.fr/item/MMO_2020_81_1_a3/
[1] K. Auinger, I. Dolinka, T. V. Pervukhina, M. V. Volkov, “Unary enhancements of inherently nonfinitely based semigroups”, Semigroup Forum, 89:1 (2014), 41–51 | DOI | MR | Zbl
[2] K. Auinger, I. Dolinka, M. V. Volkov, “Equational theories of semigroups with involution”, J. Algebra, 369 (2012), 203–225 | DOI | MR | Zbl
[3] K. Auinger, I. Dolinka, M. V. Volkov, “Matrix identities involving multiplication and transposition”, J. Eur. Math. Soc., 14:3 (2012), 937–969 | DOI | MR | Zbl
[4] S. Burris, E. Nelson, “Embedding the dual of $\Pi_\infty$ in the lattice of equational classes of semigroups”, Algebra Universalis, 1 (1971), 248–253 | DOI | MR | Zbl
[5] S. Burris, H. P. Sankappanavar, A course in universal algebra, Graduate Texts in Math., 78, Springer-Verlag, New York, 1981 | DOI | MR | Zbl
[6] M. Jackson, “Finite semigroups whose varieties have uncountably many subvarieties”, J. Algebra, 228:2 (2000), 512–535 | DOI | MR | Zbl
[7] M. Jackson, E. W. H. Lee, “Monoid varieties with extreme properties”, Trans. Amer. Math. Soc., 370:7 (2018), 4785–4812 | DOI | MR | Zbl
[8] M. Jackson, M. Volkov, “The algebra of adjacency patterns: Rees matrix semigroups with reversion”, Fields of logic and computation, Lecture Notes in Comput. Sci., 6300, Springer, Berlin, 2010, 414–443 | DOI | MR | Zbl
[9] E. I. Kleiman, “On basis of identities of Brandt semigroups”, Semigroup Forum, 13:3 (1977), 209–218 | MR | Zbl
[10] E. I. Kleiman, “O bazisakh tozhdestv mnogoobrazii inversnykh polugrupp”, Sib. matem. zhurn., XX:4 (1979), 760–777
[11] E. I. Kleĭman, “A pseudovariety generated by a finite semigroup”, Ural. Gos. Univ. Mat. Zap., 13:1 (1982), 40–42 (Russian) | MR | Zbl
[12] S. I. Kublanovskii, “O range mnogoobrazii Risa-Sushkevicha”, Algebra i analiz, 23:4 (2011), 59–135 | MR
[13] S. I. Kublanovskiĭ, E. W. H. Lee, N. R. Reilly, “Some conditions related to the exactness of Rees-Sushkevich varieties”, Semigroup Forum, 76:1 (2008), 87–94 | DOI | MR
[14] E. W. H. Lee, On the lattice of Rees-Sushkevich varieties, Ph.D. Thesis, Simon Fraser University, 2002 | MR
[15] E. W. H. Lee, “Identity bases for some non-exact varieties”, Semigroup Forum, 68:3 (2004), 445–457 | DOI | MR | Zbl
[16] E. W. H. Lee, “Subvarieties of the variety generated by the five-element Brandt semigroup”, Internat. J. Algebra Comput., 16:2 (2006), 417–441 | DOI | MR | Zbl
[17] E. W. H. Lee, “Minimal semigroups generating varieties with complex subvariety lattices”, Internat. J. Algebra Comput., 17:8 (2007), 1553–1572 | DOI | MR | Zbl
[18] E. W. H. Lee, “On the complete join of permutative combinatorial Rees-Sushkevich varieties”, Int. J. Algebra, 1 (2007), 1–9 | DOI | MR
[19] E. W. H. Lee, “Combinatorial Rees-Sushkevich varieties are finitely based”, Internat. J. Algebra Comput., 18:5 (2008), 957–978 | DOI | MR | Zbl
[20] E. W. H. Lee, “Combinatorial Rees-Sushkevich varieties that are Cross, finitely generated, or small”, Bull. Aust. Math. Soc., 81:1 (2010), 64–84 | DOI | MR | Zbl
[21] E. W. H. Lee, “Finite basis problem for semigroups of order five or less: generalization and revisitation”, Studia Logica, 101:1 (2013), 95–115 | DOI | MR | Zbl
[22] E. W. H. Lee, “Finitely based finite involution semigroups with non-finitely based reducts”, Quaest. Math., 39:2 (2016), 217–243 | DOI | MR | Zbl
[23] E. W. H. Lee, “Equational theories of unstable involution semigroups”, Electron. Res. Announc. Math. Sci., 24 (2017), 10–20 | MR | Zbl
[24] E. W. H. Lee, “Varieties generated by unstable involution semigroups with continuum many subvarieties”, C. R. Math. Acad. Sci. Paris, 356:1 (2018), 44–51 | DOI | MR | Zbl
[25] E. W. H. Lee, “Non-finitely based finite involution semigroups with finitely based semigroup reducts”, Korean J. Math., 27:1 (2019), 53–62 | DOI | MR | Zbl
[26] E. W. H. Lee, N. R. Reilly, “Centrality in Rees-Sushkevich varieties”, Algebra Universalis, 58:2 (2008), 145–180 | DOI | MR | Zbl
[27] E. W. H. Lee, M. V. Volkov, “On the structure of the lattice of combinatorial Rees-Sushkevich varieties”, Semigroups and formal languages (Lisbon 2005), World Sci. Publ., Hackensack, NJ, 2007, 164–187 | DOI | MR | Zbl
[28] E. W. H. Lee, M. V. Volkov, “Limit varieties generated by completely 0-simple semigroups”, Internat. J. Algebra Comput., 21 (2011), 257–294 | DOI | MR | Zbl
[29] P. Perkins, “Bases for equational theories of semigroups”, J. Algebra, 11:2 (1969), 298–314 | DOI | MR | Zbl
[30] N. R. Reilly, “Complete congruences on the lattice of Rees-Sushkevich varieties”, Comm. Algebra, 35:11 (2007), 3624–3659 | DOI | MR | Zbl
[31] N. R. Reilly, “The interval $[\mathbf{B}_2, \mathbf{NB}_2]$ in the lattice of Rees-Sushkevich varieties”, Algebra Universalis, 59 (2008), 345–363 | DOI | MR | Zbl
[32] N. R. Reilly, “Shades of orthodoxy in Rees-Sushkevich varieties”, Semigroup Forum, 78:1 (2009), 157–182 | DOI | MR | Zbl
[33] N. R. Reilly, “Regular principal factors in free objects in Rees-Sushkevich varieties”, Semigroup Forum, 86:1 (2013), 162–182 | DOI | MR | Zbl
[34] M. V. Sapir, “Problemy bernsaidovskogo tipa i konechnaya baziruemost v mnogoobraziyakh polugrupp”, Izv. AN SSSR. Ser. matem., 51:2 (1987), 319–340 | Zbl
[35] L. N. Shevrin, B. M. Vernikov, M. V. Volkov, “Reshetki mnogoobrazii polugrupp”, Izv. vuzov. Matem., 2009, no. 3, 3–36 | Zbl
[36] L. N. Shevrin, M. V. Volkov, “Tozhdestva polugrupp”, Izv. vuzov. Matem., 1985, no. 11, 3–47 | MR | Zbl
[37] A. N. Trakhtman, “Bazis tozhdestv pyatielementnoi polugruppy Brandta”, Matematicheskie zapiski UrGU, 12 (1981), 147–149 | MR | Zbl
[38] A. N. Trahtman, “Some finite infinitely basable semigroups”, Ural. Gos. Univ. Mat. Zap., 14:2 (1987), 128–131 (Russian) | MR
[39] A. N. Trakhtman, “Shestielementnaya polugruppa, porozhdayuschaya mnogoobrazie s kontinuumom podmnogoobrazii”, Algebraicheskie sistemy i ikh mnogoobraziya, Sverdlovsk, 1988, 138–143 | MR | Zbl
[40] A. N. Trahtman, “Identities of a five-element 0-simple semigroup”, Semigroup Forum, 48:3 (1994), 385–387 | DOI | MR
[41] B. M. Vernikov, M. V. Volkov, “Reshetki nilpotentnykh mnogoobrazii polugrupp. II”, Izvestiya UrGU, 1998, no. 10, 13–33 | Zbl
[42] M. V. Volkov, “O konechnoi baziruemosti mnogoobrazii polugrup”, Matem. zametki, 45:3 (1989), 12–23 | MR | Zbl
[43] M. V. Volkov, “The finite basis problem for finite semigroups”, Sci. Math. Japan, 53 (2001), 171–199 | MR | Zbl
[44] M. V. Volkov, “On a question by Edmond W. H. Lee”, Izv. Ural. Gos. Univ. Mat. Mekh., 2005, no. 7 (36), 167–178 | MR | Zbl