Cohomology rings of a class of torus manifolds
Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 81 (2020) no. 1, pp. 87-104

Voir la notice de l'article provenant de la source Math-Net.Ru

Torus manifolds are topological generalization of smooth projective toric manifolds. We compute the rational cohomology ring of a class of locally standard torus manifolds whose orbit space may have proper non-acyclic faces. References: 15 entries.
@article{MMO_2020_81_1_a2,
     author = {S. Sarkar and D. Stanley},
     title = {Cohomology rings of a class of torus manifolds},
     journal = {Trudy Moskovskogo matemati\v{c}eskogo ob\^{s}estva},
     pages = {87--104},
     publisher = {mathdoc},
     volume = {81},
     number = {1},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MMO_2020_81_1_a2/}
}
TY  - JOUR
AU  - S. Sarkar
AU  - D. Stanley
TI  - Cohomology rings of a class of torus manifolds
JO  - Trudy Moskovskogo matematičeskogo obŝestva
PY  - 2020
SP  - 87
EP  - 104
VL  - 81
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MMO_2020_81_1_a2/
LA  - en
ID  - MMO_2020_81_1_a2
ER  - 
%0 Journal Article
%A S. Sarkar
%A D. Stanley
%T Cohomology rings of a class of torus manifolds
%J Trudy Moskovskogo matematičeskogo obŝestva
%D 2020
%P 87-104
%V 81
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MMO_2020_81_1_a2/
%G en
%F MMO_2020_81_1_a2
S. Sarkar; D. Stanley. Cohomology rings of a class of torus manifolds. Trudy Moskovskogo matematičeskogo obŝestva, Trudy Moskovskogo Matematicheskogo Obshchestva, Tome 81 (2020) no. 1, pp. 87-104. http://geodesic.mathdoc.fr/item/MMO_2020_81_1_a2/